Combustion vehicle emissions contribute to poor air quality and release greenhouse gases into the atmosphere, and vehicle pollution has been associated with numerous adverse health effects. Roadways with extensive waiting and/or passenger drop-off, such as schools and hospital drop-off zones, can result in a high incidence and density of idling vehicles. This can produce micro-climates of increased vehicle pollution. Thus, the detection of idling vehicles can be helpful in monitoring and responding to unnecessary idling and be integrated into real-time or off-line systems to address the resulting pollution. In this paper, we present a real-time, dynamic vehicle idling detection algorithm. The proposed idle detection algorithm and notification rely on an algorithm to detect these idling vehicles. The proposed method relies on a multisensor, audio-visual, machine-learning workflow to detect idling vehicles visually under three conditions: moving, static with the engine on, and static with the engine off. The visual vehicle motion detector is built in the first stage, and then a contrastive-learning-based latent space is trained for classifying static vehicle engine sound. We test our system in real-time at a hospital drop-off point in Salt Lake City. This in situ dataset was collected and annotated, and it includes vehicles of varying models and types. The experiments show that the method can detect engine switching on or off instantly and achieves 71.02 average precision (AP) for idle detection and 91.06 for engine off detection.
more »
« less
Large-Scale Acoustic Automobile Fault Detection: Diagnosing Engines Through Sound
In this paper we present AMPNet, an acoustic abnormality detection model deployed at ACV Auctions to automatically identify engine faults of vehicles listed on the ACV Auctions platform. We investigate the problem of engine fault detection and discuss our approach of deep-learning based audio classification on a large-scale automobile dataset collected at ACV Auctions. Specifically, we discuss our data collection pipeline and its challenges, dataset preprocessing and training procedures, and deployment of our trained models into a production setting. We perform empirical evaluations of AMPNet and demonstrate that our framework is able to successfully capture various engine anomalies agnostic of vehicle type. Finally we demonstrate the effectiveness and impact of AMPNet in the real world, specifically showing a 20.85% reduction in vehicle arbitrations on ACV Auctions' live auction platform.
more »
« less
- Award ID(s):
- 1822190
- PAR ID:
- 10362717
- Date Published:
- Journal Name:
- KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
- Page Range / eLocation ID:
- 2871 to 2881
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sharing and joint processing of camera feeds and sensor measurements, known as Cooperative Perception (CP), has emerged as a new technique to achieve higher perception qualities. CP can enhance the safety of Autonomous Vehicles (AVs) where their individual visual perception quality is compromised by adverse weather conditions (haze as foggy weather), low illumination, winding roads, and crowded traffic. While previous CP methods have shown success in elevating perception quality, they often assume perfect communication conditions and unlimited transmission resources to share camera feeds, which may not hold in real-world scenarios. Also, they make no effort to select better helpers when multiple options are available.To cover the limitations of former methods, in this paper, we propose a novel approach to realize an optimized CP under constrained communications. At the core of our approach is recruiting the best helper from the available list of front vehicles to augment the visual range and enhance the Object Detection (OD) accuracy of the ego vehicle. In this two-step process, we first select the helper vehicles that contribute the most to CP based on their visual range and lowest motion blur. Next, we implement a radio block optimization among the candidate vehicles to further improve communication efficiency. We specifically focus on pedestrian detection as an exemplary scenario. To validate our approach, we used the CARLA simulator to create a dataset of annotated videos for different driving scenarios where pedestrian detection is challenging for an AV with compromised vision. Our results demonstrate the efficacy of our two-step optimization process in improving the overall performance of cooperative perception in challenging scenarios, substantially improving driving safety under adverse conditions. Finally, we note that the networking assumptions are adopted from LTE Release 14 Mode 4 side-link communication, commonly used for Vehicle-to-Vehicle (V2V) communmore » « less
-
PDF is a popular document file format with a flexible file structure that can embed diverse types of content, including images and JavaScript code. However, these features make it a favored vehicle for malware attackers. In this paper, we propose an image-based PDF malware detection method that utilizes pre-trained deep neural networks (DNNs). Specifically, we convert PDF files into fixed-size grayscale images using an image visualization technique. These images are then fed into pre-trained DNN models to classify them as benign or malicious. We investigated four classical pre-trained DNN models in our study. We evaluated the performance of the proposed method using the publicly available Contagio PDF malware dataset. Our results demonstrate that MobileNetv3 achieves the best detection performance with an accuracy of 0.9969 and exhibits low computational complexity, making it a promising solution for image-based PDF malware detection.more » « less
-
With the prevalence of smartphones, pedestrians and joggers today often walk or run while listening to music. Since they are deprived of their auditory senses that would have provided important cues to dangers, they are at a much greater risk of being hit by cars or other vehicles. In this paper, we build a wearable system that uses multi-channel audio sensors embedded in a headset to help detect and locate cars from their honks, engine and tire noises, and warn pedestrians of imminent dangers of approaching cars. We demonstrate that using a segmented architecture and implementation consisting of headset-mounted audio sensors, a front-end hardware that performs signal processing and feature extraction, and machine learning based classification on a smartphone, we are able to provide early danger detection in real-time, from up to 60m distance, near 100% precision on the vehicle detection and alert the user with low latency.more » « less
-
The Arctic presents various challenges for a transition to electric vehicles compared to other regions of the world, including environmental conditions such as colder temperatures, differences in infrastructure, and cultural and economic factors. For this study, academic researchers partnered with three rural communities: Kotzebue, Galena, and Bethel, Alaska, USA. The study followed a co-production process that actively involved community partners to identify 21 typical vehicle use cases that were then empirically modeled to determine changes in fueling costs and greenhouse gas emissions related to a switch from an internal combustion engine to an electric vehicle. While most use cases showed decreases in fueling costs and climate emissions from a transition to electric versions of the vehicles, some common use profiles did not. Specifically, the short distances of typical commutes, when combined with low idling and engine block heater use, led to an increase in both fueling costs and emissions. Arctic communities likely need public investment and additional innovation in incentives, vehicle types, and power systems to fully and equitably participate in the transition to electrified transportation. More research on electric vehicle integration, user behavior, and energy demand at the community level is needed.more » « less
An official website of the United States government

