Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Dry deposition is the second largest tropospheric ozone (O3) sink and occurs through stomatal and nonstomatal pathways. Current O3uptake predictions are limited by the simplistic big‐leaf schemes commonly used in chemical transport models (CTMs) to parameterize deposition. Such schemes fail to reproduce observed O3fluxes over terrestrial ecosystems, highlighting the need for more realistic treatment of surface‐atmosphere exchange in CTMs. We address this need by linking a resolved canopy model (1D Multi‐Layer Canopy CHemistry and Exchange Model, MLC‐CHEM) to the GEOS‐Chem CTM and use this new framework to simulate O3fluxes over three north temperate forests. We compare results with in situ measurements from four field studies and with standalone, observationally constrained MLC‐CHEM runs to test current knowledge of O3deposition and its drivers. We show that GEOS‐Chem overpredicts observed O3fluxes across all four studies by up to 2×, whereas the resolved‐canopy models capture observed diel profiles of O3deposition and in‐canopy concentrations to within 10%. Relative humidity and solar irradiance are strong O3flux drivers over these forests, and uncertainties in those fields provide the largest remaining source of model deposition biases. Flux partitioning analysis shows that: (a) nonstomatal loss accounts for 60% of O3deposition on average; (b) in‐canopy chemistry makes only a small contribution to total O3fluxes; and (c) the CTM big‐leaf treatment overestimates O3‐driven stomatal loss and plant phytotoxicity in these temperate forests by up to 7×. Results motivate the application of fully online vertically explicit canopy schemes in CTMs for improved O3predictions.more » « lessFree, publicly-accessible full text available December 28, 2025
- 
            Abstract In the last decades the energy-balance-closure problem has been thoroughly investigated from different angles, resulting in approaches to reduce but not completely close the surface energy balance gap. Energy transport through secondary circulations has been identified as a major cause of the remaining energy imbalance, as it is not captured by eddy covariance measurements and can only be measured additionally with great effort. Several models have already been developed to close the energy balance gap that account for factors affecting the magnitude of the energy transport by secondary circulations. However, to our knowledge, there is currently no model that accounts for thermal surface heterogeneity and that can predict the transport of both sensible and latent energy. Using a machine-learning approach, we developed a new model of energy transport by secondary circulations based on a large data set of idealized large-eddy simulations covering a wide range of unstable atmospheric conditions and surface-heterogeneity scales. In this paper, we present the development of the model and show first results of the application on more realistic LES data and field measurements from the CHEESEHEAD19 project to get an impression of the performance of the model and how the application can be implemented on field measurements. A strength of the model is that it can be applied without additional measurements and, thus, can retroactively be applied to other eddy covariance measurements to model energy transport through secondary circulations. Our work provides a promising mechanistic energy balance closure approach to 30-min flux measurements.more » « less
- 
            Abstract How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2(Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSHin the ASL decreases linearly with height regardless of soil moisture conditions,LHandFcdecrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH. The non‐closure does not imply thatFcis always underestimated;Fccan be overestimated over dry soils despite the non‐closure issue.more » « less
- 
            Abstract The decision to establish a network of researchers centers on identifying shared research goals. Ecologically specific regions, such as the USA’s National Ecological Observatory Network’s (NEON’s) eco-climatic domains, are ideal locations by which to assemble researchers with a diverse range of expertise but focused on the same set of ecological challenges. The recently established Great Lakes User Group (GLUG) is NEON’s first domain specific ensemble of researchers, whose goal is to address scientific and technical issues specific to the Great Lakes Domain 5 (D05) by using NEON data to enable advancement of ecosystem science. Here, we report on GLUG’s kick off workshop, which comprised lightning talks, keynote presentations, breakout brainstorming sessions and field site visits. Together, these activities created an environment to foster and strengthen GLUG and NEON user engagement. The tangible outcomes of the workshop exceeded initial expectations and include plans for (i) two journal articles (in addition to this one), (ii) two potential funding proposals, (iii) an assignable assets request and (iv) development of classroom activities using NEON datasets. The success of this 2.5-day event was due to a combination of factors, including establishment of clear objectives, adopting engaging activities and providing opportunities for active participation and inclusive collaboration with diverse participants. Given the success of this approach we encourage others, wanting to organize similar groups of researchers, to adopt the workshop framework presented here which will strengthen existing collaborations and foster new ones, together with raising greater awareness and promotion of use of NEON datasets. Establishing domain specific user groups will help bridge the scale gap between site level data collection and addressing regional and larger ecological challenges.more » « less
- 
            Abstract The water vapor transport associated with latent heat flux (LE) in the planetary boundary layer (PBL) is critical for the atmospheric hydrological cycle, radiation balance, and cloud formation. The spatiotemporal variability of LE and water vapor mixing ratio (rv) are poorly understood due to the scale‐dependent and nonlinear atmospheric transport responses to land surface heterogeneity. Here, airborne in situ measurements with the wavelet technique are utilized to investigate scale‐dependent relationships among LE, vertical velocity (w) variance (), andrvvariance () over a heterogeneous surface during the Chequamegon Heterogeneous Ecosystem Energy‐balance Study Enabled by a High‐density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign. Our findings reveal distinct scale distributions of LE, , and at 100 m height, with a majority scale range of 120 m–4 km in LE, 32 m–2 km in , and 200 m–8 km in . The scales are classified into three scale ranges, the turbulent scale (8–200 m), large‐eddy scale (200 m–2 km), and mesoscale (2–8 km) to evaluate scale‐resolved LE contributed by and . The large‐eddy scale in PBL contributes over 70% of the monthly mean total LE with equal parts (50%) of contributions from and . The monthly temporal variations mainly come from the first two major contributing classified scales in LE, , and . These results confirm the dominant role of the large‐eddy scale in the PBL in the vertical moisture transport from the surface to the PBL, while the mesoscale is shown to contribute an additional ∼20%. This analysis complements published scale‐dependent LE variations, which lack detailed scale‐dependent vertical velocity and moisture information.more » « less
- 
            Abstract Climate change is intensifying the hydrologic cycle and altering ecosystem function, including water flux to the atmosphere through evapotranspiration (ET). ET is made up of evaporation (E) via non‐stomatal surfaces, and transpiration (T) through plant stomata which are impacted by global changes in different ways. E and T are difficult to measure independently at the ecosystem scale, especially across multiple sites that represent different land use and land management strategies. To address this gap in understanding, we applied flux variance similarity (FVS) to quantify how E and T differ across 13 different ecosystems measured using eddy covariance in a 10 × 10 km area from the CHEESEHEAD19 experiment in northern Wisconsin, USA. The study sites included eight forests with a large deciduous broadleaf component, three evergreen needleleaf forests, and two wetlands. Average T/ET for the study period averaged nearly 52% in forested sites and 45% in wetlands, with larger values after excluding periods following rain events when evaporation from canopy interception may be expected. A dominance analysis revealed that environmental variables explained on average 69% of the variance of half‐hourly T, which decreased from summer to autumn. Deciduous and evergreen forests showed similar E trajectories over time despite differences in vegetation phenology, and vapor pressure deficit explained some 13% of the variance E in wetlands but only 5% or less in forests. Retrieval of E and T within a dense network of flux towers lends confidence that FVS is a promising approach for comparing ecosystem hydrology across multiple sites to improve our process‐based understanding of ecosystem water fluxes.more » « less
- 
            Abstract Structurally complex forests optimize resources to assimilate carbon more effectively, leading to higher productivity. Information obtained from Light Detection and Ranging (LiDAR)‐derived canopy structural complexity (CSC) metrics across spatial scales serves as a powerful indicator of ecosystem‐scale functions such as gross primary productivity (GPP). However, our understanding of mechanistic links between forest structure and function, and the impact of disturbance on the relationship, is limited. Here, we paired eddy covariance measurements of carbon and water fluxes from nine forested sites within the 10 × 10 km CHEESEHEAD19 study domain in Northern Wisconsin, USA with drone LiDAR measurements of CSC to establish which CSC metrics were strong drivers of GPP, and tested potential mediators of the relationship. Mechanistic relationships were inspected at five resolutions (0.25, 2, 10, 25, and 50 m) to determine whether relationships persisted with scale. Vertical heterogeneity metrics were the most influential in predicting productivity for forests with a significant degree of heterogeneity in management, forest type, and species composition. CSC metrics included in the structure‐function relationship as well as driver strength was dependent on metric calculation resolution. The relationship was mediated by light use efficiency (LUE) and water use efficiency (WUE), with WUE being a stronger mediator and driver of GPP. These findings allow us to improve representation in ecosystem models of how CSC impacts light and water‐sensitive processes, and ultimately GPP. Improved models enhance our capacity to accurately simulate forest responses to management, furthering our ability to assess climate mitigation strategies.more » « less
- 
            Abstract Dry deposition, the second largest removal process of ozone (O3) in the troposphere, plays a role in controlling the natural variability of surface O3concentrations. Terrestrial ecosystems remove O3either through stomatal uptake or nonstomatal processes. In chemical transport models, nonstomatal pathways are roughly constrained and may not correctly capture total O3loss. To address this, the first simultaneous eddy covariance measurements of O3and formic acid (HCOOH), a tracer of in‐canopy oxidation of biogenic terpenes, were made in a mixed temperate forest in Northern Wisconsin. Daytime maximum O3deposition velocities,vd(O3), ranged between 0.5 and 1.2 cm s−1. Comparison of observedvd(O3) with observationally constrained estimates of stomatal uptake and parameterized estimates of cuticular and soil uptake reveal a large (10%–90%) residual nonstomatal contribution tovd(O3). The residual downward flux of O3was well correlated with measurements of HCOOH upward flux, suggesting unaccounted for in‐canopy gas‐phase chemistry.more » « less
- 
            Abstract Surface‐atmosphere fluxes and their drivers vary across space and time. A growing area of interest is in downscaling, localizing, and/or resolving sub‐grid scale energy, water, and carbon fluxes and drivers. Existing downscaling methods require inputs of land surface properties at relatively high spatial (e.g., sub‐kilometer) and temporal (e.g., hourly) resolutions, but many observed land surface drivers are not continuously available at these resolutions. We evaluate an approach to overcome this challenge for land surface temperature (LST), a World Meteorological Organization Essential Climate Variable and a key driver for surface heat fluxes. The Chequamegon Heterogenous Ecosystem Energy‐balance Study Enabled by a High‐density Extensive Array of Detectors (CHEESEHEAD19) field experiment provided a scalable testbed. We downscaled LST from satellites (GOES‐16 and ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station [ECOSTRESS]) with further refinement using airborne hyperspectral imagery. Temporally and spatially downscaled LST compared well to independent observations from a network of 20 micrometeorological towers and piloted aircrafts in addition to Landsat‐based LST retrieval and drone‐based LST observed at one tower site. The downscaled 50‐m hourly LST showed good relationships with tower (r2 = 0.79, RMSE = 3.5 K) and airborne (r2 = 0.75, RMSE = 2.4 K) observations over space and time, with precision lower over wetlands and lakes, and some improvement for capturing spatio‐temporal variation compared to a geostationary satellite. Further downscaling to 10 m using hyperspectral imagery resolved hot and cold spots across the landscape as evidenced by independent drone LST, with significant reduction in RMSE by 1.3 K. These results demonstrate a simple pathway for multi‐sensor retrieval of high space and time resolution LST.more » « less
- 
            We investigate how effective surface length scales (Le f f ) and atmospheric boundary layer stability modulate surface-induced secondary circulations over a realistic heterogeneous sur- face. The evolution of the circulations and their impact on surface-atmosphere fluxes are studied using coupled large eddy simulations of the CHEESEHEAD19 field campaign. The heterogeneity-induced circulations were diagnosed using time and ensemble averaging of the atmospheric fields. Simulations were performed for summer (August) and autumn (Septem- ber) Intensive Observation Periods of the field campaign, characterised differently in terms of normalised surface length scales and ABL stability. Quasi-stationary and persistent cir- culations were diagnosed in the daytime ABL that span the entire mixed layer height (zi ). Their variation in time and space are presented. Homogeneous control runs were also per- formed to compare and contrast spatial organisation and validate the time-ensemble averaging operation. In the convective boundary layers simulated during the summer time simulations, wavelengths that scale as the effective surface heterogeneity length scales contribute the most to the heterogeneity-induced transport. Contributions from surface-induced circulations were lower in the simulated near-neutral BL for the autumn simulations. We find that both Le f f /zi and ABL static stability control the relative contribution of surface-induced circulations to the area averaged vertical transport. This scale analysis supports prior work over the study domain on scaling tower measured fluxes by including low frequency contribution. We believe that the conceptual framework presented here can be extended to include the effects of sub-grid land surface heterogeneity in numerical weather prediction and climate models and also to further explore scale-aware scaling methodologies for near surface-atmosphere exchanges.more » « lessFree, publicly-accessible full text available January 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
