skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1822923

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Edge servers have recently become very popular for performing localized analytics, especially on video, as they reduce data traffic and protect privacy. However, due to their resource constraints, these servers often employ compressed models, which are typically prone to data drift. Consequently, for edge servers to provide cloud-comparable quality, they must also perform continuous learning to mitigate this drift. However, at expected deployment scales, performing continuous training on every edge server is not sustainable due to their aggregate power demands on grid supply and associated sustainability footprints. To address these challenges, we propose Us.as,´ an approach combining algorithmic adjustments, hardware-software co-design, and morphable acceleration hardware to enable the training of workloads on these edge servers to be powered by renewable, but intermittent, solar power that can sustainably scale alongside data sources. Our evaluation of Us.as on a real-world´ traffic dataset indicates that our continuous learning approach simultaneously improves both accuracy and efficiency: Us.as´ offers a 4.96% greater mean accuracy than prior approaches while our morphable accelerator that adapts to solar variance can save up to {234.95kWH, 2.63MWH}/year/edge-server compared to a {DNN accelerator, data center scale GPU}, respectively. 
    more » « less
  2. This work focuses on forecasting future license usage for high-performance computing environments and using such predictions to improve the effectiveness of job scheduling. Specifically, we propose a model that carries out both short-term and long-term license usage forecasting and a method of using forecasts to improve job scheduling. Our long-term forecasting model achieves a Mean Absolute Percentage Error (MAPE) as low as 0.26 for a 12-month forecast of daily peak license usage. Our job scheduling experimental results also indicate that wasted work from jobs with insufficient licenses can be reduced by up to 92% without increasing the average license-using job completion times, during periods of high license usage, with our proposed license-aware scheduler. 
    more » « less
  3. null (Ed.)
    There is an ongoing trend to increasingly offload inference tasks, such as CNNs, to edge devices in many IoT scenarios. As energy harvesting is an attractive IoT power source, recent ReRAM-based CNN accelerators have been designed for operation on harvested energy. When addressing the instability problems of harvested energy, prior optimization techniques often assume that the load is fixed, overlooking the close interactions among input power, computational load, and circuit efficiency, or adapt the dynamic load to match the just-in-time incoming power under a simple harvesting architecture with no intermediate energy storage. Targeting a more efficient harvesting architecture equipped with both energy storage and energy delivery modules, this paper is the first effort to target whole system, end-to-end efficiency for an energy harvesting ReRAM-based accelerator. First, we model the relationships among ReRAM load power, DC-DC converter efficiency, and power failure overhead. Then, a maximum computation progress tracking scheme ( MaxTracker ) is proposed to achieve a joint optimization of the whole system by tuning the load power of the ReRAM-based accelerator. Specifically, MaxTracker accommodates both continuous and intermittent computing schemes and provides dynamic ReRAM load according to harvesting scenarios. We evaluate MaxTracker over four input power scenarios, and the experimental results show average speedups of 38.4%/40.3% (up to 51.3%/84.4%), over a full activation scheme (with energy storage) and order-of-magnitude speedups over the recently proposed (energy storage-less) ResiRCA technique. Furthermore, we also explore MaxTracker in combination with the Capybara reconfigurable capacitor approach to offer more flexible tuners and thus further boost the system performance. 
    more » « less
  4. null (Ed.)
    There is an increasing demand for performing machine learning tasks, such as human activity recognition (HAR) on emerging ultra-low-power internet of things (IoT) platforms. Recent works show substantial efficiency boosts from performing inference tasks directly on the IoT nodes rather than merely transmitting raw sensor data. However, the computation and power demands of deep neural network (DNN) based inference pose significant challenges when executed on the nodes of an energy-harvesting wireless sensor network (EH-WSN). Moreover, managing inferences requiring responses from multiple energy-harvesting nodes imposes challenges at the system level in addition to the constraints at each node. This paper presents a novel scheduling policy along with an adaptive ensemble learner to efficiently perform HAR on a distributed energy-harvesting body area network. Our proposed policy, Origin, strategically ensures efficient and accurate individual inference execution at each sensor node by using a novel activity-aware scheduling approach. It also leverages the continuous nature of human activity when coordinating and aggregating results from all the sensor nodes to improve final classification accuracy. Further, Origin proposes an adaptive ensemble learner to personalize the optimizations based on each individual user. Experimental results using two different HAR data-sets show Origin, while running on harvested energy, to be at least 2.5% more accurate than a classical battery-powered energy aware HAR classifier continuously operating at the same average power. 
    more » « less