skip to main content


Search for: All records

Award ID contains: 1824198

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Realizing Hebbian plasticity in large-scale neuromorphic systems is essential for reconfiguring them for recognition tasks. Spike-timing-dependent plasticity, as a tool to this effect, has received a lot of attention in recent times. This phenomenon encodes weight update information as correlations between the presynaptic and postsynaptic event times, as such, it is imperative for each synapse in a silicon neural network to somehow keep its own time. We present a biologically plausible and optimized Register Transfer Level (RTL) and algorithmic approach to the Nearest-Neighbor STDP with time management handled by the postsynaptic dendrite. We adopt a time-constant based ramp approximation for ease of RTL implementation and incorporation in large-scale digital neuromorphic systems. 
    more » « less
  2. Tactile sensing for robotics is achieved through a variety of mechanisms, including magnetic, optical-tactile, and conductive fluid. Currently, the fluid-based sensors have struck the right balance of anthropomorphic sizes and shapes and accuracy of tactile response measurement. However, this design is plagued by a low Signal to Noise Ratio (SNR) due to the fluid based sensing mechanism “damping” the measurement values that are hard to model. To this end, we present a spatio-temporal gradient representation on the data obtained from fluid-based tactile sensors, which is inspired from neuromorphic principles of event based sensing. We present a novel algorithm (GradTac) that converts discrete data points from spatial tactile sensors into spatio-temporal surfaces and tracks tactile contours across these surfaces. Processing the tactile data using the proposed spatio-temporal domain is robust, makes it less susceptible to the inherent noise from the fluid based sensors, and allows accurate tracking of regions of touch as compared to using the raw data. We successfully evaluate and demonstrate the efficacy of GradTac on many real-world experiments performed using the Shadow Dexterous Hand, equipped with the BioTac SP sensors. Specifically, we use it for tracking tactile input across the sensor’s surface, measuring relative forces, detecting linear and rotational slip, and for edge tracking. We also release an accompanying task-agnostic dataset for the BioTac SP, which we hope will provide a resource to compare and quantify various novel approaches, and motivate further research. 
    more » « less
  3. Experiments to understand the sensorimotor neural interactions in the human cortical speech system support the existence of a bidirectional flow of interactions between the auditory and motor regions. Their key function is to enable the brain to ‘learn’ how to control the vocal tract for speech production. This idea is the impetus for the recently proposed "MirrorNet", a constrained autoencoder architecture. In this paper, the MirrorNet is applied to learn, in an unsupervised manner, the controls of a specific audio synthesizer (DIVA) to produce melodies only from their auditory spectrograms. The results demonstrate how the MirrorNet discovers the synthesizer parameters to generate the melodies that closely resemble the original and those of unseen melodies, and even determine the best set parameters to approximate renditions of complex piano melodies generated by a different synthesizer. This generalizability of the MirrorNet illustrates its potential to discover from sensory data the controls of arbitrary motor-plants. 
    more » « less
  4. Abstract Coronavirus SARS-COV-2 infections continue to spread across the world, yet effective large-scale disease detection and prediction remain limited. COVID Control: A Johns Hopkins University Study, is a novel syndromic surveillance approach, which collects body temperature and COVID-like illness (CLI) symptoms across the US using a smartphone app and applies spatio-temporal clustering techniques and cross-correlation analysis to create maps of abnormal symptomatology incidence that are made publicly available. The results of the cross-correlation analysis identify optimal temporal lags between symptoms and a range of COVID-19 outcomes, with new taste/smell loss showing the highest correlations. We also identified temporal clusters of change in taste/smell entries and confirmed COVID-19 incidence in Baltimore City and County. Further, we utilized an extended simulated dataset to showcase our analytics in Maryland. The resulting clusters can serve as indicators of emerging COVID-19 outbreaks, and support syndromic surveillance as an early warning system for disease prevention and control. 
    more » « less
  5. Recent advances in object segmentation have demonstrated that deep neural networks excel at object segmentation for specific classes in color and depth images. However, their performance is dictated by the number of classes and objects used for training, thereby hindering generalization to never seen objects or zero-shot samples. To exacerbate the problem further, object segmentation using image frames rely on recognition and pattern matching cues. Instead, we utilize the ‘active’ nature of a robot and their ability to ‘interact’ with the environment to induce additional geometric constraints for segmenting zero-shot samples. In this paper, we present the first framework to segment unknown objects in a cluttered scene by repeatedly ‘nudging’ at the objects and moving them to obtain additional motion cues at every step using only a monochrome monocular camera. We call our framework NudgeSeg. These motion cues are used to refine the segmentation masks. We successfully test our approach to segment novel objects in various cluttered scenes and provide an extensive study with image and motion segmentation methods. We show an impressive average detection rate of over 86% on zero-shot objects. 
    more » « less
  6. The rapid rise of accessibility of unmanned aerial vehicles or drones pose a threat to general security and confidentiality. Most of the commercially available or custom-built drones are multi-rotors and are comprised of multiple propellers. Since these propellers rotate at a high-speed, they are generally the fastest moving parts of an image and cannot be directly "seen" by a classical camera without severe motion blur. We utilize a class of sensors that are particularly suitable for such scenarios called event cameras, which have a high temporal resolution, low-latency, and high dynamic range. In this paper, we model the geometry of a propeller and use it to generate simulated events which are used to train a deep neural network called EVPropNet to detect propellers from the data of an event camera. EVPropNet directly transfers to the real world without any fine-tuning or retraining. We present two applications of our network: (a) tracking and following an unmarked drone and (b) landing on a near-hover drone. We successfully evaluate and demonstrate the proposed approach in many real-world experiments with different propeller shapes and sizes. Our network can detect propellers at a rate of 85.1% even when 60% of the propeller is occluded and can run at upto 35Hz on a 2W power budget. To our knowledge, this is the first deep learning-based solution for detecting propellers (to detect drones). Finally, our applications also show an impressive success rate of 92% and 90% for the tracking and landing tasks respectively. 
    more » « less
  7. How the auditory system encodes speech sounds is not well understood, and animal models have a lot to offer in investigating such questions. This study evaluated the representations of a variety of natural and synthetic sounds in both ferrets and humans, and reported that humans differed from ferrets in the manner in which speech and music were represented, despite controlling for the spectrotemporal content of the sounds. This work makes an important contribution to our understanding of how the coding of such sounds differs across species. 
    more » « less
  8. Musical imagery is the voluntary internal hearing of music in the mind without the need for physical action or external stimulation. Numerous studies have already revealed brain areas activated during imagery. However, it remains unclear to what extent imagined music responses preserve the detailed temporal dynamics of the acoustic stimulus envelope and, crucially, whether melodic expectations play any role in modulating responses to imagined music, as they prominently do during listening. These modulations are important as they reflect aspects of the human musical experience, such as its acquisition, engagement, and enjoyment. This study explored the nature of these modulations in imagined music based on EEG recordings from 21 professional musicians (6 females and 15 males). Regression analyses were conducted to demonstrate that imagined neural signals can be predicted accurately, similarly to the listening task, and were sufficiently robust to allow for accurate identification of the imagined musical piece from the EEG. In doing so, our results indicate that imagery and listening tasks elicited an overlapping but distinctive topography of neural responses to sound acoustics, which is in line with previous fMRI literature. Melodic expectation, however, evoked very similar frontal spatial activation in both conditions, suggesting that they are supported by the same underlying mechanisms. Finally, neural responses induced by imagery exhibited a specific transformation from the listening condition, which primarily included a relative delay and a polarity inversion of the response. This transformation demonstrates the top-down predictive nature of the expectation mechanisms arising during both listening and imagery. 
    more » « less
  9. During music listening, humans routinely acquire the regularities of the acoustic sequences and use them to anticipate and interpret the ongoing melody. Specifically, in line with this predictive framework, it is thought that brain responses during such listening reflect a comparison between the bottom-up sensory responses and top-down prediction signals generated by an internal model that embodies the music exposure and expectations of the listener. To attain a clear view of these predictive responses, previous work has eliminated the sensory inputs by inserting artificial silences (or sound omissions) that leave behind only the corresponding predictions of the thwarted expectations. Here, we demonstrate a new alternate approach in which we decode the predictive electroencephalography (EEG) responses to the silent intervals that are naturally interspersed within the music. We did this as participants (experiment 1, 20 participants, 10 female; experiment 2, 21 participants, 6 female) listened or imagined Bach piano melodies. Prediction signals were quantified and assessed via a computational model of the melodic structure of the music and were shown to exhibit the same response characteristics when measured during listening or imagining. These include an inverted polarity for both silence and imagined responses relative to listening, as well as response magnitude modulations that precisely reflect the expectations of notes and silences in both listening and imagery conditions. These findings therefore provide a unifying view that links results from many previous paradigms, including omission reactions and the expectation modulation of sensory responses, all in the context of naturalistic music listening. 
    more » « less
  10. Human visual understanding of action is reliant on anticipation of contact as is demonstrated by pioneering work in cognitive science. Taking inspiration from this, we introduce representations and models centered on contact, which we then use in action prediction and anticipation. We annotate a subset of the EPIC Kitchens dataset to include time-to-contact between hands and objects, as well as segmentations of hands and objects. Using these annotations we train the Anticipation Module, a module producing Contact Anticipation Maps and Next Active Object Segmentations - novel low-level representations providing temporal and spatial characteristics of anticipated near future action. On top of the Anticipation Module we apply Egocentric Object Manipulation Graphs (Ego-OMG), a framework for action anticipation and prediction. Ego-OMG models longer-term temporal semantic relations through the use of a graph modeling transitions between contact delineated action states. Use of the Anticipation Module within Ego-OMG produces state-of-the-art results, achieving 1st and 2nd place on the unseen and seen test sets, respectively, of the EPIC Kitchens Action Anticipation Challenge, and achieving state-of-the-art results on the tasks of action anticipation and action prediction over EPIC Kitchens. We perform ablation studies over characteristics of the Anticipation Module to evaluate their utility. 
    more » « less