The accurate measurement of wall zeta potentials and solute–surface interaction length scales for electrolyte and non-electrolyte solutes, respectively, is critical to the design of many biomedical and microfluidic applications. We present a novel microfluidic approach using diffusioosmosis for measuring either the zeta potentials or the characteristic interaction length scales for surfaces exposed to, respectively, electrolyte or non-electrolyte solutes. When flows containing different solute concentrations merge in a junction, local solute concentration gradients can drive diffusioosmotic flow due to electrokinetic, steric, and other interactions between the solute molecules and solid surfaces. We demonstrate a microfluidic system consisting of a long, narrow pore connecting two large side channels in which solute concentration gradients drive diffusioosmosis within the pore, resulting in predictable fluid velocity/pressure and solute profiles. Furthermore, we present analytical results and a methodology to determine the zeta potential or interaction length scale for the pore surfaces based on the solute concentrations in the main side channels, the flow rate in the pore, and the pressure drop across the pore. We apply this method to the experimental data of Lee et al. to predict the zeta potentials of their system, and we use 3D numerical simulations to validate the theory and showmore »
This content will become publicly available on June 17, 2023
GradTac: Spatio-Temporal Gradient Based Tactile Sensing
Tactile sensing for robotics is achieved through a variety of mechanisms, including magnetic, optical-tactile, and conductive fluid. Currently, the fluid-based sensors have struck the right balance of anthropomorphic sizes and shapes and accuracy of tactile response measurement. However, this design is plagued by a low Signal to Noise Ratio (SNR) due to the fluid based sensing mechanism “damping” the measurement values that are hard to model. To this end, we present a spatio-temporal gradient representation on the data obtained from fluid-based tactile sensors, which is inspired from neuromorphic principles of event based sensing. We present a novel algorithm (GradTac) that converts discrete data points from spatial tactile sensors into spatio-temporal surfaces and tracks tactile contours across these surfaces. Processing the tactile data using the proposed spatio-temporal domain is robust, makes it less susceptible to the inherent noise from the fluid based sensors, and allows accurate tracking of regions of touch as compared to using the raw data. We successfully evaluate and demonstrate the efficacy of GradTac on many real-world experiments performed using the Shadow Dexterous Hand, equipped with the BioTac SP sensors. Specifically, we use it for tracking tactile input across the sensor’s surface, measuring relative forces, detecting linear and more »
- Publication Date:
- NSF-PAR ID:
- 10376845
- Journal Name:
- Frontiers in Robotics and AI
- Volume:
- 9
- ISSN:
- 2296-9144
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a method for classifying the quality of near-contact grasps using spatial metrics that are recoverable from sensor data. Current methods often rely on calculating precise contact points, which are difficult to calculate in real life, or on tactile sensors or image data, which may be unavailable for some applications. Our method, in contrast, uses a mix of spatial metrics that do not depend on the fingers being in contact with the object, such as the object's approximate size and location. The grasp quality can be calculated {\em before} the fingers actually contact the object, enabling near-grasp quality prediction. Using a random forest classifier, the resulting system is able to predict grasp quality with 96\% accuracy using spatial metrics based on the locations of the robot palm, fingers and object. Furthermore, it can maintain an accuracy of 90\% when exposed to 10\% noise across all its inputs.
-
The surface urban heat island (SUHI), which represents the difference of land surface temperature (LST) in urban relativity to neighboring non-urban surfaces, is usually measured using satellite LST data. Over the last few decades, advancements of remote sensing along with spatial science have considerably increased the number and quality of SUHI studies that form the major body of the urban heat island (UHI) literature. This paper provides a systematic review of satellite-based SUHI studies, from their origin in 1972 to the present. We find an exponentially increasing trend of SUHI research since 2005, with clear preferences for geographic areas, time of day, seasons, research foci, and platforms/sensors. The most frequently studied region and time period of research are China and summer daytime, respectively. Nearly two-thirds of the studies focus on the SUHI/LST variability at a local scale. The Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+)/Thermal Infrared Sensor (TIRS) and Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) are the two most commonly-used satellite sensors and account for about 78% of the total publications. We systematically reviewed the main satellite/sensors, methods, key findings, and challenges of the SUHI research. Previous studies confirm that the large spatial (local to global scales) and temporal (diurnal,more »
-
Madden, John D. ; Anderson, Iain A. ; Shea, Herbert R. (Ed.)Ras Labs makes Synthetic Muscle™, which is a class of electroactive polymer (EAP) based materials and actuators that sense pressure (gentle touch to high impact), controllably contract and expand at low voltage (1.5 V to 50 V, including use of batteries), and attenuate force. We are in the robotics era, but robots do have their challenges. Currently, robotic sensing is mainly visual, which is useful up until the point of contact. To understand how an object is being gripped, tactile feedback is needed. For handling fragile objects, if the grip is too tight, breakage occurs, and if the grip is too loose, the object will slip out of the grasp, also leading to breakage. Rigid robotic grippers using a visual feedback loop can struggle to determine the exact point and quality of contact. Robotic grippers can also get a stuttering effect in the visual feedback loop. By using soft Synthetic Muscle™ based EAP pads as the sensors, immediate feedback was generated at the first point of contact. Because these pads provided a soft, compliant interface, the first point of contact did not apply excessive force, allowing the force applied to the object to be controlled. The EAP sensor could alsomore »
-
During in-hand manipulation, robots must be able to continuously estimate the pose of the object in order to generate appropriate control actions. The performance of algorithms for pose estimation hinges on the robot's sensors being able to detect discriminative geometric object features, but previous sensing modalities are unable to make such measurements robustly. The robot's fingers can occlude the view of environment- or robot-mounted image sensors, and tactile sensors can only measure at the local areas of contact. Motivated by fingertip-embedded proximity sensors' robustness to occlusion and ability to measure beyond the local areas of contact, we present the first evaluation of proximity sensor based pose estimation for in-hand manipulation. We develop a novel two-fingered hand with fingertip-embedded optical time-of-flight proximity sensors as a testbed for pose estimation during planar in-hand manipulation. Here, the in-hand manipulation task consists of the robot moving a cylindrical object from one end of its workspace to the other. We demonstrate, with statistical significance, that proximity-sensor based pose estimation via particle filtering during in-hand manipulation: a) exhibits 50% lower average pose error than a tactile-sensor based baseline; b) empowers a model predictive controller to achieve 30% lower final positioning error compared to when using tactile-sensormore »