skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1824708

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Wrinkling is a ubiquitous surface phenomenon in many biological tissues and is believed to play an important role in arterial health. As arteries are highly nonlinear, anisotropic, multilayered composite systems, it is necessary to investigate wrinkling incorporating these material characteristics. Several studies have examined surface wrinkling mechanisms with nonlinear isotropic material relationships. Nevertheless, wrinkling associated with anisotropic constitutive models such as Ogden–Gasser–Holzapfel (OGH), which is suitable for soft biological tissues, and in particular arteries, still requires investigation. Here, the effects of OGH parameters such as fibers’ orientation, stiffness, and dispersion on the onset of wrinkling, wrinkle wavelength and amplitude are elucidated through analysis of a bilayer system composed of a thin, stiff neo-Hookean membrane and a soft OGH substrate subjected to compression. Critical contractile strain at which wrinkles occur is predicted using both finite element analysis and analytical linear perturbation approach. Results suggest that besides stiffness mismatch, anisotropic features associated with fiber stiffness and distribution might be used in natural layered systems to adjust wrinkling and subsequent folding behaviors. Further analysis of a bilayer system with fibers in the (x–y) plane subjected to compression in the x direction shows a complex dependence of wrinkling strain and wavelength on fiber angle, stiffness, and dispersion. This behavior is captured by an approximation utilizing the linearized anisotropic properties derived from OGH model. Such understanding of wrinkling in this artery wall-like system will help identify the role of wrinkling mechanisms in biological artery in addition to the design of its synthetic counterparts. 
    more » « less