Nanodiamonds (NDs) have been widely explored for applications in drug delivery, optical bioimaging, sensors, quantum computing, and others. Room-temperature nanomanufacturing of NDs in open air using confined laser shock detonation (CLSD) emerges as a novel manufacturing strategy for ND fabrication. However, the fundamental process mechanism remains unclear. This work investigates the underlying mechanisms responsible for nanomanufacturing of NDs during CLSD with a focus on the laser-matter interaction, the role of the confining effect, and the graphite-to-diamond transition. Specifically, a first-principles model is integrated with a molecular dynamics simulation to describe the laser-induced thermo-hydrodynamic phenomena and the graphite-to-diamond phase transition during CLSD. The simulation results elucidate the confining effect in determining the material’s responses to laser irradiation in terms of the temporal and spatial evolutions of temperature, pressure, electron number density, and particle velocity. The integrated model demonstrates the capability of predicting the laser energy threshold for ND synthesis and the efficiency of ND nucleation under varying processing parameters. This research will provide significant insights into CLSD and advance this nanomanufacturing strategy for the fabrication of NDs and other high-temperature-high-pressure synthesized nanomaterials towards extensive applications.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Gyroid structure, a nature inspired cellular architecture, is under extensive exploration recently due to its structure continuity, uniform stress distribution under compression, and stable collapse mechanism during deformation. However, when combining with a functional gradient, the Gyroid structure can perform much different mechanical behavior from its homogeneous counterpart. Herein, bottom-up computational modeling is performed to investigate the mechanics of functional gradient nano-gyroid structure made of copper (Cu). Our work reveals that its mechanical properties degrade with a density that is much slower than those of homogeneous gyroid structure. The scaling of yield strength [Formula: see text] to the relative density [Formula: see text] for the functional gradient gyroid structure is in the factor of 1.5. Moreover, the layer-by-layer collapsing mechanism yields significantly better mechanical energy absorption ability. This study not only leads to insightful understanding of the deformation mechanisms in nonuniform gyroid structures but also promotes the development of the functional gradient cellular materials.more » « less