skip to main content


Search for: All records

Award ID contains: 1826850

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ooids are a common type of carbonate sand grain that form through a combination of constructive and destructive mechanisms: growth via precipitation and diminution via physical abrasion. Because growth and abrasion obey distinct morphometric rules, we developed an approach to quantitatively constrain the history of growth and abrasion of individual ooid grains using the record of evolving particle shape preserved by their cortical layers. We designed a model to simulate >106possible growth‐abrasion histories for each pair of cortical layer bounding surfaces in an individual ooid. Estimates for the durations of growth and abrasion of each cortical layer were obtained by identifying the simulated history that best fit the observed particle shape. We applied this approach to thin sections of “modern” lacustrine ooids collected from several locations in the Great Salt Lake (GSL), UT, to assess the spatial and temporal variability of environmental conditions from the perspective of individual grains within a single deposit. We found that GSL ooids do not all share the same histories: Clustering ooid histories by a Fréchet distance metric revealed commonalities between grains found together locally within a deposit but distinct differences between subpopulations shared among localities across the GSL. These results support the tacit view that carbonate sedimentary grains found together in the environment do reflect a common history of sediment transport. This general approach to invert ooid cortical stratigraphy can be applied to characterize environmental variability over <1,000 year timescales in both marine and lacustrine ooid grainstones of any geologic age.

     
    more » « less
  2. Abstract

    Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.

     
    more » « less