skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 23, 2026

Title: Carbonates and microbialites record a dynamic lake basin evolution in the Late Cretaceous to Eocene Sheep Pass Formation, Nevada, USA
ABSTRACT Ancient terrestrial sediments provide critical information about the responses of continental environments to global scale climate and tectonic perturbations, which are vastly understudied relative to marine archives. The >1 km thick Sheep Pass Formation type section in east‐central Nevada preserves non‐marine carbonates, including microbialites, and lesser siliciclastics, deposited in a tectonically active, high‐elevation basin during the latest Cretaceous through to middle Eocene time, an interval spanning major global greenhouse climate states and warming events. This study combines outcrop and hand‐sample observations, thin section petrography and X‐ray diffraction mineralogical analyses to create a facies framework and interpreted environmental evolution for the Sheep Pass Basin. Together, these observations portray the Sheep Pass Formation type section as a dynamic and highly sensitive basin due to its small size. The dominance of thrombolite boundstones compared to metazoan fossils, which sets the Sheep Pass Formation type section apart from other Palaeogene‐aged lake basins in the western United States, reflects the resilience of microbial mats compared to metazoans in this dynamic setting. The major lacustrine phase of the Sheep Pass Basin records three intervals: a shallow lake with few microbialites, followed by abundant microbialites, before the transition to a marginal setting with evaporative conditions, marking the culmination of this major lacustrine phase. The transition to a microbialite‐dominated interval was likely driven by physicochemical conditions (for example, higher alkalinity), paired with lower competition from metazoan grazers. Although the Sheep Pass Formation type section preserves environmental change in response to both tectonics and climate, similar trends in facies, mineralogy and invertebrate abundance compared to other sedimentary basins from this time suggest that global climate influenced distinct environmental shifts in the Sheep Pass Basin. This work provides a detailed sedimentological framework for a new, high‐elevation palaeoclimate record during a pivotal geological climate interval.  more » « less
Award ID(s):
1826850
PAR ID:
10567765
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Sedimentology
ISSN:
0037-0746
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Lower Permian Vrchlabí Formation was deposited in the Krkonoše Piedmont Basin of the Czech Republic during theAutunian (297–299 Ma) when global climate was characterized by a prolonged cold phase of the Late Paleozoic Ice Ageand when terrestrial environments shifted toward more arid conditions as atmospheric pCO 2 decreased. The RudníkHorizon of the lower Vrchlabí Formation is a well studied interval that records extensive lacustrine deposition. However thefine-grained redbed interval that underlie this interval are less well studied. In order to contrast the geochemistry of theseredbed arid climate facies with the deposits formed during inundation by the Rudník lacustrine system, we analyzed 17 fine-grained samples of varying lithology using XRF and LOI analysis from a detailed section through ~100m outcrop exposureof red beds near the down of Vrchlabí. These samples represent 5 different facies: 1) featureless maroon reddishmudstone, 2) pedogenic red-brown-orange mudstone, 3) gray laminated shale, 4) pedogenic gray mudstone and 5) yellowlaminated siltstone. Facies 5 produced substantially different results from the others, having the highest LOI (~21%)compared to 8.8-12.3% for all other facies, and lower Al overall than the other facies (13% compared to 18-20%). Facies 5is interpreted to represent a paludal mudstone that experienced calcite precipitation during deposition. Chemical Index ofAlteration (CIA) was highest for Facies 1 (70.1) and this facie also exhibited the highest Ti/Al (0.04) and is consistent withhighly weathered sediment influx and could represent a loessite. Facies 3 and 4 show similar average CIA values (63 and69, respectively); this is interpreted to indicate that Facies 3 formed from less chemically weathered sediment that servedas the parent material which was then subject to weak pedogenesis to form Facies 4. In contrast, Facies 2 showed muchlower average CIA value (57). This is interpreted to suggest pedogenic carbonate was precipitated, which also would havecaused the overall higher Ca/Al (0.38) for Facies 2 compared to the other facies, including the red beds of Facies 1 (0.09).Altogether these results suggest variable sediment influx under variable environmental conditions prior to the developmentof the Rudník lacustrine system. 
    more » « less
  2. Abstract The North American Newark Canyon Formation (NCF; ∼113–98 Ma) presents an opportunity to examine how terrestrial carbonate facies reflect different aspects of paleoclimate during one of the hottest periods of Earth's history. The lower NCF type section preserves heterogeneous palustrine facies and the upper NCF preserves lacustrine deposits. We combined carbonate facies analysis withδ13C,δ18O, and Δ47data sets to assess which carbonate facies preserve stable isotope signals that are most representative of climatic conditions. Palustrine facies record the heterogeneity of the original wetland environment in which they formed. Using the pelmicrite facies that formed in deeper wetlands, we interpret a lower temperature zone (35–40°C) to reflect warm season water temperatures. In contrast, a mottled micrite facies which formed in shallower wetlands records hotter temperatures (36–68°C). These hotter temperatures reflect radiatively heated “bare‐skin” temperatures that occurred in a shallow depositional setting. The lower lacustrine unit has been secondarily altered by hydrothermal fluids while the upper lacustrine unit likely preserves primary temperatures andδ18Owaterof catchment‐integrated precipitation. Resultantly, the palustrine pelmicrite and lacustrine micrite are the facies most likely to reflect ambient climate conditions, and therefore, are the best facies to use for paleoclimate interpretations. Average warm season water temperatures of 41.1 ± 3.6°C and 37.8 ± 2.5°C are preserved by the palustrine pelmicrite (∼113–112 Ma) and lacustrine micrite (∼112–103 Ma), respectively. These data support previous interpretations of the mid‐Cretaceous as a hothouse climate and demonstrate the importance of characterizing facies for identifying the data most representative of past climates. 
    more » « less
  3. Permocarboniferous strata of basins proximal to the Central Pangaean Mountains in France archive regional paleoequatorial climate during a unique interval in geological history (late Paleozoic Pangaean assembly, ice age collapse, megamonsoon inception). The voluminous (estimated 2 km) succession of exclusively fine-grained redbeds that composes the Permian Salagou Formation (Lodéve Basin, France) has been interpreted as recording either lacustrine or fluvial settings. We present preliminary field data to explore the hypothesis that these deposits record eolian transport, and ultimate deposition as either loess or in a shallow lacustrine environment. Fieldwork includes ~1000 m of section described at dm-scale, and magnetic susceptibility measured at 0.5 m intervals, from sections strategically located in both proximal and distal areas, and from all stratigraphic levels of the unit to assess spatial and temporal variations. These data indicate that the lower and middle Salagou Formation is dominated by internally massive, red mud-siltstone with no evidence of channeling. Up-section, a higher frequency of ripples, rare hummocky cross stratification, and mudcracks record the presence of shallow water, but with no channeling, nor units of grain size exceeding very fine-grained sand. Randomly-oriented slickensides at various localities in the mid-upper Salagou may represent incipient pedogenesis. The lack of evidence for channels and other fluvial features casts doubt on a fluvial interpretation. A lacustrine interpretation is consistent with local evidence of shallow water. However, in the absence of fluvial transport indicators, large volumes of entirely fine-grained material that were delivered to the Lodéve basin call for eolian transport, and thus a loess or shallow lacustrine interpretation. The documentation of voluminous paleoloess in eastern equatorial Pangea during the Permian could reflect the influence of glaciation associated with the Variscan highlands. Together with previous studies that detail Permian loess in western equatorial Pangea, this work impacts our understandingof the global Late Paleozoic climate system and presents a need to reevaluate modeling parameters (e.g. equatorial mountain glaciation, atmospheric dust loading). 
    more » « less
  4. ABSTRACT Terrestrial sedimentary archives record critical information about environment and climate of the past, as well as provide insights into the style, timing, and magnitude of structural deformation in a region. The Cretaceous Newark Canyon Formation, located in central Nevada, USA, was deposited in the hinterland of the Sevier fold–thrust belt during the North American Cordilleran orogeny. While previous research has focused on the coarser-grained, fluvial components of the Newark Canyon Formation, the carbonate and finer-grained facies of this formation remain comparatively understudied. A more complete understanding of the Newark Canyon Formation provides insights into Cretaceous syndeformational deposition in the Central Nevada thrust belt, serves as a useful case study for deconvolving the influence of tectonic and climatic forces on sedimentation in both the North American Cordillera and other contractional orogens, and will provide a critical foundation upon which to build future paleoclimate and paleoaltimetry studies. We combine facies descriptions, stratigraphic measurements, and optical and cathodoluminescence petrography to develop a comprehensive depositional model for the Newark Canyon Formation. We identify six distinct facies that show that the Newark Canyon Formation evolved through four stages of deposition: 1) an anastomosing river system with palustrine interchannel areas, 2) a braided river system, 3) a balance-filled, carbonate-bearing lacustrine system, and 4) a second braided river system. Although climate undoubtedly played a role, we suggest that the deposition and coeval deformation of the synorogenic Newark Canyon Formation was in direct response to the construction of east-vergent contractional structures proximal to the type section. Comparison to other contemporary terrestrial sedimentary basins deposited in a variety of tectonic settings provides helpful insights into the influences of regional tectonics, regional and global climate, catchment characteristics, underlying lithologies, and subcrop geology in the preserved sedimentary record. 
    more » « less
  5. It has long been recognized that lakes can bury large amounts of organic carbon (CORG) in their sediment, with important consequences for conventional and unconventional petroleum resources and potentially for the global carbon cycle. The detailed distribution of lacustrine organic carbon through space and time is important to understanding its commercial and climatic implications, but has seldom been documented in detail. The Green River Formation offers a unique opportunity to improve this understanding, due to extensive Fischer assay analyses of its oil generative potential and to recently published radioisotopic age analyses of intercalat ed volcanic tuffs. Fischer assay analyses reveal distinctly different patterns of organic matter enrichment that correlate with different lacustrine facies associations. Histograms of oil generative potential for evaporative facies of the Wilkins Peak Member exhibit an approximately exponential distribution. This pattern is interpret ed to result from episodic expansion and contraction of Eocene Lake Gosiute across a low-gradient basin floor that experienced frequent desiccation. In contrast, histograms for fluctuating profundal facies of the upper Rife Bed of the Tipton Member and the lower LaClede Bed of the Laney Member exhibit an approximately normal or log normal distribution, with modes as high as 16–18 gallons per ton. This pattern is interpreted to reflect generally deeper conditions when the lake often intersected basin-bounding uplifts. Within the Bridger basin, burial of CORG was greatest in the south during initial Wilkins Peak Member deposition, reflecting greater rates of accommodation near the Uinta uplift. The locus of CORG burial shifted north during upper Wilkins Peak Member deposition, coincident with a decrease in differential accommodation. CORG burial during deposition of the upper Rife and lower LaClede Beds was greatest in the southeast, due either to greater accommodation or localized influx of river-borne nutrients. Average CORG burial fluxes are consistently ~4-5 g/m2 yr for each interval, which is an order of magnitude less than fluxes reported for small Holocene lakes in the northern hemisphere. Maximum rates of CORG burial during deposition of organic-rich mudstone beds (oil shale) were likely similar to Holocene lakes however. Deposition of carbonate minerals in the Bridger basin resulted in additional, inorganic carbon burial. Overall it appears that carbon burial by Eocene lakes could have influenced the global carbon cycle, but only if synchronized across multiple lake systems. 
    more » « less