Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Obeid, Iyad Selesnick (Ed.)The Temple University Hospital EEG Corpus (TUEG) [1] is the largest publicly available EEG corpus of its type and currently has over 5,000 subscribers (we currently average 35 new subscribers a week). Several valuable subsets of this corpus have been developed including the Temple University Hospital EEG Seizure Corpus (TUSZ) [2] and the Temple University Hospital EEG Artifact Corpus (TUAR) [3]. TUSZ contains manually annotated seizure events and has been widely used to develop seizure detection and prediction technology [4]. TUAR contains manually annotated artifacts and has been used to improve machine learning performance on seizure detection tasks [5]. In this poster, we will discuss recent improvements made to both corpora that are creating opportunities to improve machine learning performance. Two major concerns that were raised when v1.5.2 of TUSZ was released for the Neureka 2020 Epilepsy Challenge were: (1) the subjects contained in the training, development (validation) and blind evaluation sets were not mutually exclusive, and (2) high frequency seizures were not accurately annotated in all files. Regarding (1), there were 50 subjects in dev, 50 subjects in eval, and 592 subjects in train. There was one subject common to dev and eval, five subjects common to dev andmore »
-
Obeid, Iyad Selesnick (Ed.)Scalp electroencephalogram (EEG) signals inherently have a low signal-to-noise ratio due to the way the signal is electrically transduced. Temporal and spatial information must be exploited to achieve accurate detection of seizure events. Most popular approaches to seizure detection using deep learning do not jointly model this information or require multiple passes over the signal, which makes the systems inherently non-causal. In this paper, we exploit both simultaneously by converting the multichannel signal to a grayscale image and using transfer learning to achieve high performance. The proposed system is trained end-to-end with only very simple pre- and post-processing operations which are computationally lightweight and have low latency, making them conducive to clinical applications that require real-time processing. We have achieved a performance of 42.05% sensitivity with 5.78 false alarm per 24 hours on the development dataset of v1.5.2 of the Temple University Hospital Seizure Detection Corpus. On a single core CPU operating at 1.7 GHz, the system runs faster than real-time (0.58 xRT), uses 16 Gbytes of memory, and has a latency of 300 msec.
-
Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)The evaluation of machine learning algorithms in biomedical fields for ap-plications involving sequential data lacks both rigor and standardization. Common quantitative scalar evaluation metrics such as sensitivity and specificity can often be misleading and not accurately integrate application requirements. Evaluation metrics must ultimately reflect the needs of users yet be sufficiently sensitive to guide algorithm development. For example, feedback from critical care clinicians who use automated event detection software in clinical applications has been overwhelmingly emphatic that a low false alarm rate, typically measured in units of the number of errors per 24 hours, is the single most important criterion for user acceptance. Though using a single metric is not often as insightful as examining performance over a range of operating conditions, there is, nevertheless, a need for a sin-gle scalar figure of merit. In this chapter, we discuss the deficiencies of existing metrics for a seizure detection task and propose several new metrics that offer a more balanced view of performance. We demonstrate these metrics on a seizure detection task based on the TUH EEG Seizure Corpus. We introduce two promising metrics: (1) a measure based on a concept borrowed from the spoken term detection literature, Actual Term-Weighted Value,more »
-
Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)There has been a lack of standardization of the evaluation of sequential decoding systems in the bioengineering community. Assessment of the accuracy of a candidate system’s segmentations and measurement of a false alarm rate are examples of two performance metrics that are very critical to the operational acceptance of a technology. However, measurement of such quantities in a consistent manner require many scoring software implementation details to be resolved. Results can be highly sensitive to these implementation details. In this paper, we revisit and evaluate a set of metrics introduced in our open source scoring software for sequential decoding of multichannel signals. This software was used to rank sixteen automatic seizure detection systems recently developed for the 2020 Neureka® Epilepsy Challenge. The systems produced by the participants provided us with a broad range of design variations that allowed assessment of the consistency of the proposed metrics. We present a comprehensive assessment of four of these new metrics and validate our findings with our previous studies. We also validate a proposed new metric, time-aligned event scoring, that focuses on the segmentation behavior of an algorithm. We demonstrate how we can gain insight into the performance of a system using these metrics.
-
Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)The Neural Engineering Data Consortium has recently developed a new subset of its popular open source EEG corpus – TUH EEG (TUEG) [1]. The TUEG Corpus is the world’s largest open source corpus of EEG data and currently has over 3,300 subscribers. There are several valuable subsets of this data, including the TUH Seizure Detection Corpus (TUSZ) [2], which was featured in the Neureka 2020 Epilepsy Challenge [3]. In this poster, we present a new subset of the TUEG Corpus – the TU Artifact Corpus. This corpus contains 310 EEG files in which every artifact has been annotated. This data can be used to evaluate artifact reduction technology. Since TUEG is comprised of actual clinical data, the set of artifacts appearing in the data is rich and challenging. EEG artifacts are defined as waveforms that are not of cerebral origin and may be affected by numerous external and or physiological factors. These extraneous signals are often mistaken for seizures due to their morphological similarity in amplitude and frequency [4]. Artifacts often lead to raised false alarm rates in machine learning systems, which poses a major challenge for machine learning research. Most state-of-the-art systems use some form of artifact reduction technologymore »
-
Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)The Temple University Hospital Seizure Detection Corpus (TUSZ) [1] has been in distribution since April 2017. It is a subset of the TUH EEG Corpus (TUEG) [2] and the most frequently requested corpus from our 3,000+ subscribers. It was recently featured as the challenge task in the Neureka 2020 Epilepsy Challenge [3]. A summary of the development of the corpus is shown below in Table 1. The TUSZ Corpus is a fully annotated corpus, which means every seizure event that occurs within its files has been annotated. The data is selected from TUEG using a screening process that identifies files most likely to contain seizures [1]. Approximately 7% of the TUEG data contains a seizure event, so it is important we triage TUEG for high yield data. One hour of EEG data requires approximately one hour of human labor to complete annotation using the pipeline described below, so it is important from a financial standpoint that we accurately triage data. A summary of the labels being used to annotate the data is shown in Table 2. Certain standards are put into place to optimize the annotation process while not sacrificing consistency. Due to the nature of EEG recordings, some recordsmore »
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »
-
Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)Scalp electroencephalograms (EEGs) are the primary means by which phy-sicians diagnose brain-related illnesses such as epilepsy and seizures. Au-tomated seizure detection using clinical EEGs is a very difficult machine learning problem due to the low fidelity of a scalp EEG signal. Neverthe-less, despite the poor signal quality, clinicians can reliably diagnose ill-nesses from visual inspection of the signal waveform. Commercially avail-able automated seizure detection systems, however, suffer from unaccepta-bly high false alarm rates. Deep learning algorithms that require large amounts of training data have not previously been effective on this task due to the lack of big data resources necessary for building such models and the complexity of the signals involved. The evolution of big data science, most notably the release of the Temple University EEG (TUEG) Corpus, has mo-tivated renewed interest in this problem. In this chapter, we discuss the application of a variety of deep learning ar-chitectures to automated seizure detection. Architectures explored include multilayer perceptrons, convolutional neural networks (CNNs), long short-term memory networks (LSTMs), gated recurrent units and residual neural networks. We use the TUEG Corpus, supplemented with data from Duke University, to evaluate the performance of these hybrid deep structures. Since TUEG contains a significant amountmore »
-
The goal of this document is to describe the file formats used to store annotations for the Temple University Hospital EEG (TUEG) Corpus (Obeid & Picone, 2016). Subsets of the corpus have been manually annotated (Veloso et al., 2017) and are available from our project web site (Choi et al., 2017). These annotations are stored in two formats: a label file (*.lbl*) that represents an annotation as a hierarchical graph, and a time-synchronous event file (*.tse*) that represents an annotation as a flat series of events with start and stop times, type of seizure, and probability. In this document, we describe each of these formats. Tools to read and display this information are also available from our project web site (Capp et al., 2018; McHugh & Picone, 2016).