skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1827854

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. This work reports the first example of mono-nuclear Cu pincers with SNS ligation acting as electrocatalyst precursors for the electrochemical conversion of carbon dioxide to CO and H 2 in protic organic media. 
    more » « less
  3. The syntheses and detailed characterizations (X-ray crystallography, NMR spectroscopy, cyclic voltammetry, infrared spectroscopy, electrospray mass spectrometry, and elemental analyses) of two new Cu(I) pincer complexes are reported. The pincer ligand coordinates through one nitrogen and two sulfur donor atoms and is based on bis-imidazole or bis-triazole precursors. These tridentate SNS ligands incorporate pyridine and thione-substituted imidazole or triazole functionalities with connecting methylene units that provide flexibility to the ligand backbone and enable high bite-angle binding. Variable temperature 1H NMR analysis of these complexes and of a similar zinc(II) SNS system shows that all are fluxional in solution and permits the determination of delta G double dagger and delta S double dagger. DFT calculations are used to model the fluxionality of these complexes and indicate that a coordinating solvent molecule can promote hemilability of the SNS ligand by lowering the energy barrier involved in the partial rotation of the methylene units. 
    more » « less