skip to main content

Search for: All records

Award ID contains: 1828168

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2023
  2. Hallibert, Pascal ; Hull, Tony B. ; Kim, Daewook ; Keller, Fanny (Ed.)
    The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatory for very-high-energy gamma rays. One candidate design for CTA's medium-sized telescopes consists of the Schwarzschild-Couder Telescope (SCT), featuring innovative dual-mirror optics. The SCT project has built and is currently operating a 9.7-m prototype SCT (pSCT) at the Fred Lawrence Whipple Observatory (FLWO); such optical design enables the use of a compact camera with state-of-the art silicon photomultiplier detectors. A partially-equipped camera has recently successfully detected the Crab Nebula with a statistical significance of 8.6 standard deviations. A funded upgrade of the pSCT focal plane sensors and electronics is currently ongoing, which will bring the total number of channels from 1600 to 11328 and the telescope field of view from about 2.7° to 8° . In this work, we will describe the technical and scientific performance of the pSCT.
  3. The Schwarzschild-Couder Telescope (SCT) is a mid-size telescope proposed for the Cherenkov Telescope Array. In order to substantially improve the eld of view and image resolution compared to i traditional Davies-Cotton telescopes, innovative solutions are foreseen in the design, like the use of Silicon Photomultipliers (SiPM) as light sensors and waveform digitizers for recording the fast light signals from atmospheric showers. A project is now underway to upgrade the camera by increasing its pixel count to 11; 328 pixels and field of view of 8:0. The camera electronics has been completely redesigned by using new waveform digitizer and trigger ASICs with the final goal of lowering the gamma-ray energy threshold and therefore provide an excellent instrument tailored for extended sources investigations and multi-messenger astronomy.