skip to main content


Search for: All records

Award ID contains: 1828609

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BSTRACT:Piezoelectricmaterialsare used to fabricateacoustictransducersforbubblechambersin searchfor particlesof dark matter.It has been shownthat bubblesinitiatedby nuclearrecoilsemit acousticradiationdistinguishablefrom the phasetransitionscausedby alpha-decay�themain backgroundnoisein such searches.However,these piezoelectricmaterialsmust exhibitultralowradioactivityto minimizethe neutronbackgroundfor dark matterdetectionwhilepossessinghigh acousticsensitivity.Here,for the first time, we demonstrateradiopurehigh-performancepiezoelectricceramicsmeetingthe criteriafor acousticsensing.The screeningofradiopureprecursorsis performedto identifythose with low238U,232Th, and210Pbcontents.Usingthe radiopureprecursors,piezoelectricceramicswith varyingcompositionsare synthesized,and their electromechanicalacousticsensingperformanceis evaluated.Multiplesynthesismodificationssuch as dopingand texturingare utilizedtotailor the piezoelectriccoefficientsof the piezoelectricceramics,and the relationshipbetweenthe piezoelectriccoefficientsand acousticsensingperformanceof the ceramicsis investigated.Acoustictransducersfabricatedusing texturedPb(Mg1/3Nb2/3)O3−PbTiO3(PMN−PT)ceramicsare found to exhibitsuperioracousticsensitivitydue totheir high piezoelectrictransductioncoefficient(d33×g33). This study demonstratesa usefulfigure of merit (FOM)for acousticsensingin bubblechambers 
    more » « less
    Free, publicly-accessible full text available December 26, 2024
  2. Baracchini, Elisabetta (Ed.)

    The Scintillating Bubble Chamber (SBC) collaboration is developing liquid-noble bubble chambers for the detection of sub-keV nuclear recoils. These detectors benefit from the electron recoil rejection inherent in moderately-superheated bubble chambers with the addition of energy reconstruction provided from the scintillation signal. The ability to measure low-energy nuclear recoils allows the search for GeV-scale dark matter and the measurement of coherent elastic neutrino-nucleus scattering on argon from MeV-scale reactor antineutrinos. The first physics-scale detector, SBC-LAr10, is in the commissioning phase at Fermilab, where extensive engineering and calibration studies will be performed. In parallel, a functionally identical low-background version, SBC-SNOLAB, is being built for a dark matter search underground at SNOLAB. SBC-SNOLAB, with a 10 kg-yr exposure, will have sensitivity to a dark matter–nucleon cross section of 2×10−42 cm2 at 1 GeV/c2 dark matter mass, and future detectors could reach the boundary of the argon neutrino fog with a tonne-yr exposure. In addition, the deployment of an SBC detector at a nuclear reactor could enable neutrino physics investigations including measurements of the weak mixing angle and searches for sterile neutrinos, the neutrino magnetic moment, and the light Z’ gauge boson.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract Bubble chambers using liquid xenon (and liquid argon) have been operated (resp. planned) by the Scintillating Bubble Chamber (SBC) collaboration for GeV-scale dark matter searches and CE ν NS from reactors. This will require a robust calibration program of the nucleation efficiency of low-energy nuclear recoils in these target media. Such a program has been carried out by the PICO collaboration, which aims to directly detect dark matter using C 3 F 8 bubble chambers. Neutron calibration data from mono-energetic neutron beam and Am-Be source has been collected and analyzed, leading to a global fit of a generic nucleation efficiency model for carbon and fluorine recoils, at thermodynamic thresholds of 2.45 and 3.29 keV. Fitting the many-dimensional model to the data (34 free parameters) is a non-trivial computational challenge, addressed with a custom Markov Chain Monte Carlo approach, which will be presented. Parametric MC studies undertaken to validate this methodology are also discussed. This fit paradigm demonstrated for the PICO calibration will be applied to existing and future scintillating bubble chamber calibration data. 
    more » « less
  4. null (Ed.)