skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1829136

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The behavior and predictability of rip currents (strong, wave‐driven offshore‐directed surfzone currents) have been studied for decades. However, few studies have examined the effects of rip channel morphology on the rip generation or have compared morphodynamic models with observations. Here, simulations conducted with the numerical morphodynamic model MIKE21 reproduce observed trends in flows and bathymetric evolution for two channels dredged across a nearshore sandbar and terrace on an ocean beach near Duck, NC, USA. Channel dimensions, wave conditions, and flows differed between the two cases. In one case, a strong rip current was driven by moderate height, near‐normally incident waves over an approximately 1‐m deep channel with relatively little bathymetric evolution. In the other case, no rip was generated by the large, near‐normally incident waves over the shallower (∼0.5 m) channel, and the channel migrated in the direction of the mean flow and eventually filled in. The model simulated the flow directions, the generation (or not) of rip currents, and the morphological evolution of the channels reasonably well. Model simulations were then conducted for different combinations of the two channel geometries and two wave conditions to examine the relative importance of the waves and morphology to the rip current evolution. The different bathymetries were the dominant factor controlling the flow, whereas both the initial morphology and wave conditions were important for channel evolution. In addition, channel dimensions affected the spatial distribution of rip current forcings and the relative importance of terms. 
    more » « less
  2. Abstract. Ocean surges pose a global threat for coastal stability.These hazardous events alter flow conditions and pore pressures in floodedbeach areas during both inundation and subsequent retreat stages, which canmobilize beach material, potentially enhancing erosion significantly. Inthis study, the evolution of surge-induced pore-pressure gradients is studied through numerical hydrologic simulations of storm surges. The spatiotemporal variability of critically high gradients is analyzed in three dimensions. The analysis is based on a threshold value obtained for quicksand formationof beach materials under groundwater seepage. Simulations of surge eventsshow that, during the run-up stage, head gradients can rise to the calculated critical level landward of the advancing inundation line. During thereceding stage, critical gradients were simulated seaward of the retreatinginundation line. These gradients reach maximum magnitudes just as sea levelreturns to pre-surge levels and are most accentuated beneath the still-water shoreline, where the model surface changes slope. The gradients vary alongthe shore owing to variable beach morphology, with the largest gradientsseaward of intermediate-scale (1–3 m elevation) topographic elements (dunes)in the flood zone. These findings suggest that the common practices inmonitoring and mitigating surge-induced failures and erosion, which typically focus on the flattest areas of beaches, might need to be revised to include other topographic features. 
    more » « less
  3. null (Ed.)