skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Roles of Bathymetry and Waves in Rip‐Channel Dynamics
Abstract The behavior and predictability of rip currents (strong, wave‐driven offshore‐directed surfzone currents) have been studied for decades. However, few studies have examined the effects of rip channel morphology on the rip generation or have compared morphodynamic models with observations. Here, simulations conducted with the numerical morphodynamic model MIKE21 reproduce observed trends in flows and bathymetric evolution for two channels dredged across a nearshore sandbar and terrace on an ocean beach near Duck, NC, USA. Channel dimensions, wave conditions, and flows differed between the two cases. In one case, a strong rip current was driven by moderate height, near‐normally incident waves over an approximately 1‐m deep channel with relatively little bathymetric evolution. In the other case, no rip was generated by the large, near‐normally incident waves over the shallower (∼0.5 m) channel, and the channel migrated in the direction of the mean flow and eventually filled in. The model simulated the flow directions, the generation (or not) of rip currents, and the morphological evolution of the channels reasonably well. Model simulations were then conducted for different combinations of the two channel geometries and two wave conditions to examine the relative importance of the waves and morphology to the rip current evolution. The different bathymetries were the dominant factor controlling the flow, whereas both the initial morphology and wave conditions were important for channel evolution. In addition, channel dimensions affected the spatial distribution of rip current forcings and the relative importance of terms.  more » « less
Award ID(s):
2044850 1829136
PAR ID:
10489204
Author(s) / Creator(s):
; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
129
Issue:
1
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using an idealized channel representative of a coastal plain estuary, we conducted numerical simulations to investigate the generation of internal lee waves by lateral circulation. It is shown that the lee waves can be generated across all salinity regimes in an estuary. Since the lateral currents are usually subcritical with respect to the lowest mode, mode-2 lee waves are most prevalent but a hydraulic jump may develop during the transition to subcritical flows in the deep channel, producing high energy dissipation and strong mixing. Unlike flows over a sill, stratified water in the deep channel may become stagnant such that a mode-1 depression wave can form higher up in the water column. With the lee wave Froude number above 1 and the intrinsic wave frequency between the inertial and buoyancy frequency, the lee waves generated in coastal plain estuaries are nonlinear waves with the wave amplitude Δ h scaling approximately with , where V is the maximum lateral flow velocity and is the buoyancy frequency. The model results are summarized using the estuarine classification diagram based on the freshwater Froude number Fr f and the mixing parameter M . The Δ h decreases with increasing Fr f as stronger stratification suppresses waves, and no internal waves are generated at large Fr f . The Δ h initially increases with increasing M as the lateral flows become stronger with stronger tidal currents, but decreases or saturates to a certain amplitude as M further increases. This modeling study suggests that lee waves can be generated over a wide range of estuarine conditions. 
    more » « less
  2. Recent mooring observations at a cross-channel section in Chesapeake Bay showed that internal solitary waves regularly appeared during certain phases of a tidal cycle and propagated from the deep channel to the shallow shoal. It was hypothesized that these waves resulted from the nonlinear steepening of internal lee waves generated by lateral currents over channel-shoal topography. In this study numerical modeling is conducted to investigate the interaction between lateral circulation and cross-channel topography and discern the generation mechanism of the internal lee waves. During ebb tides, lateral bottom Ekman forcing drives a counterclockwise (looking into estuary) lateral circulation, with strong currents advecting stratified water over the western flank of the deep channel and producing large isopycnal displacements. When the lateral flow becomes supercritical with respect to mode-2 internal waves, a mode-2 internal lee wave is generated on the flank of the deep channel and subsequently propagates onto the western shoal. When the bottom lateral flow becomes near-critical or supercritical with respect to mode-1 internal waves, the lee wave evolves into an internal hydraulic jump. On the shallow shoal, the lee waves or jumps evolve into internal bores of elevation. 
    more » « less
  3. Abstract While lee-wave generation has been argued to be a major sink for the 1-TW wind work on the ocean’s circulation, microstructure measurements in the Antarctic Circumpolar Currents find dissipation rates as much as an order of magnitude weaker than linear lee-wave generation predictions in bottom-intensified currents. Wave action conservation suggests that a substantial fraction of lee-wave radiation can be reabsorbed into bottom-intensified flows. Numerical simulations are conducted here to investigate generation, reabsorption, and dissipation of internal lee waves in a bottom-intensified, laterally confined jet that resembles a localized abyssal current over bottom topography. For the case of monochromatic topography with |kU0| ≈ 0.9N, wherekis the along-stream topographic wavenumber, |U0| is the near-bottom flow speed, andNis the buoyancy frequency; Reynolds-decomposed energy conservation is consistent with linear wave action conservation predictions that only 14% of lee-wave generation is dissipated, with the bulk of lee-wave energy flux reabsorbed by the bottom-intensified flow. Thus, water column reabsorption needs to be taken into account as a possible mechanism for reducing the lee-wave dissipative sink for balanced circulation. 
    more » « less
  4. Abstract Despite its relatively small magnitude, cross-channel circulation in estuaries can influence the along-channel momentum balance, dispersion, and transport. We investigate spatial and temporal variation in cross-channel circulation at two contrasting sites in the Hudson River estuary. The two sites differ in the relative strength and direction of Coriolis and curvature forcing. We contrast the patterns and magnitudes of flow at the two sites during varying conditions in stratification driven by tidal amplitude and river discharge. We found well-defined flows during flood tides at both sites, characterized by mainly two-layer structures when the water column was more homogeneous and structures with three or more layers when the water column was more stratified. Ebb tides had generally weaker and less definite flows, except at one site where curvature and Coriolis reinforced each other during spring tide ebbs. Cross-channel currents had similar patterns, but were oppositely directed at the two sites, demonstrating the importance of curvature even in channels with relatively gradual curves. Coriolis and curvature dominated the measured terms in the cross-channel momentum balance. Their combination was generally consistent with driving the observed patterns and directions of flow, but local acceleration and cross-channel advection made some notable contributions. A large residual in the momentum balance indicates that some combination of vertical stress divergence, baroclinic pressure gradients, and along-channel and vertical advection must play an essential role, but data limitations prevented an accurate estimation of these terms. Cross-channel advection affected the along-channel momentum balance at times, with implications for the exchange flow’s strength. Significance StatementCurrents that flow across the channel in an estuary move slower than those flowing along the channel, but they can transport materials and change water properties in important ways, affecting human uses of estuaries such as shipping, aquaculture, and recreation. We wanted to better understand cross-channel currents in the Hudson River estuary. We found that larger tides produced the strongest cross-channel currents with a two-layer pattern, compared to weaker currents with three layers during smaller tides. Higher or lower river flow also affected current strength. Comparing two locations, we saw cross-channel currents moving in opposite directions because of differences in the curvature of the river channel. Our results show how channel curvature and Earth’s rotation combine to produce cross-channel currents. 
    more » « less
  5. Abstract In the surfzone, breaking‐wave generated eddies and vortices transport material along the coast and offshore to the continental shelf, providing a pathway from land to the ocean. Here, surfzone vorticity is investigated with unique field observations obtained during a wide range of wave and bathymetric conditions on an Atlantic Ocean beach. Small spatial‐scale [O(10 m)] vorticity estimated with a 5 m diameter ring of 14 current meters deployed in ∼2 m water depth increased as the directional spread of the wave field increased. Large spatial‐scale [O(100 m)] vorticity calculated from remote sensing estimates of currents across the surfzone along 200 m of the shoreline increased as alongshore bathymetric variability (channels, bars, bumps, holes) increased. For all bathymetric conditions, large‐scale vorticity in the inner surfzone was more energetic than in the outer surfzone. 
    more » « less