skip to main content

Search for: All records

Award ID contains: 1829434

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chunks allow us to use long-term knowledge to efficiently represent the world in working memory. Most views of chunking assume that when we use chunks, this results in the loss of specific perceptual details, since it is presumed the contents of chunks are decoded from long-term memory rather than reflecting the exact details of the item that was presented. However, in two experiments, we find that in situations where participants make use of chunks to improve visual working memory, access to instance-specific perceptual detail (that cannot be retrieved from long-term memory) increased, rather than decreased. This supports an alternative view: that chunks facilitate the encoding and retention into memory of perceptual details as part of structured, hierarchical memories, rather than serving as mere “content-free” pointers. It also provides a strong contrast to accounts in which working memory capacity is assumed to be exhaustively described by the number of chunks remembered.
  2. Abstract Almost all models of visual working memory—the cognitive system that holds visual information in an active state—assume it has a fixed capacity: Some models propose a limit of three to four objects, where others propose there is a fixed pool of resources for each basic visual feature. Recent findings, however, suggest that memory performance is improved for real-world objects. What supports these increases in capacity? Here, we test whether the meaningfulness of a stimulus alone influences working memory capacity while controlling for visual complexity and directly assessing the active component of working memory using EEG. Participants remembered ambiguous stimuli that could either be perceived as a face or as meaningless shapes. Participants had higher performance and increased neural delay activity when the memory display consisted of more meaningful stimuli. Critically, by asking participants whether they perceived the stimuli as a face or not, we also show that these increases in visual working memory capacity and recruitment of additional neural resources are because of the subjective perception of the stimulus and thus cannot be driven by physical properties of the stimulus. Broadly, this suggests that the capacity for active storage in visual working memory is not fixed but that moremore »meaningful stimuli recruit additional working memory resources, allowing them to be better remembered.« less
  3. Feature-based attention is known to enhance visual processing globally across the visual field, even at task-irrelevant locations. Here, we asked whether attention to object categories, in particular faces, shows similar location-independent tuning. Using EEG, we measured the face-selective N170 component of the EEG signal to examine neural responses to faces at task-irrelevant locations while participants attended to faces at another task-relevant location. Across two experiments, we found that visual processing of faces was amplified at task-irrelevant locations when participants attended to faces relative to when participants attended to either buildings or scrambled face parts. The fact that we see this enhancement with the N170 suggests that these attentional effects occur at the earliest stage of face processing. Two additional behavioral experiments showed that it is easier to attend to the same object category across the visual field relative to two distinct categories, consistent with object-based attention spreading globally. Together, these results suggest that attention to high-level object categories shows similar spatially global effects on visual processing as attention to simple, individual, low-level features.