Controlling adhesion on demand is essential for many manufacturing and assembly processes such as microtransfer printing. Among various strategies, pneumatics‐controlled switchable adhesion is efficient and robust but currently still suffers from challenges in miniaturization and high energy cost. In this paper, a novel way to achieve tunable adhesion using low pressure by inducing sidewall buckling in soft hollow pillars (SHPs) is introduced. It is shown that the dry adhesion of these SHPs can be changed by more than two orders of magnitude (up to 151×) using low activating pressure (≈−10 or ≈20 kPa). Large enough negative pressure triggers sidewall buckling while positive pressure induces sidewall bulging, both of which can significantly change stress distribution at the bottom surface to facilitate crack initiation and reduce adhesion therein. It is shown that a single SHP can be activated by a micropump to manipulate various lightweight objects with different curvatures and surface textures. Here, it is also demonstrated that an array of SHPs can realize selective pick‐and‐place of an array of objects. These demonstrations illustrate the robustness, simplicity, and versatility of these SHPs with highly tunable dry adhesion.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Stiffness is a mechanical property of vital importance to any material system and is typically considered a static quantity. Recent work, however, has shown that novel materials with programmable stiffness can enhance the performance and simplify the design of engineered systems, such as morphing wings, robotic grippers, and wearable exoskeletons. For many of these applications, the ability to program stiffness with electrical activation is advantageous because of the natural compatibility with electrical sensing, control, and power networks ubiquitous in autonomous machines and robots. The numerous applications for materials with electrically driven stiffness modulation has driven a rapid increase in the number of publications in this field. Here, a comprehensive review of the available materials that realize electroprogrammable stiffness is provided, showing that all current approaches can be categorized as using electrostatics or electrically activated phase changes, and summarizing the advantages, limitations, and applications of these materials. Finally, a perspective identifies state‐of‐the‐art trends and an outlook of future opportunities for the development and use of materials with electroprogrammable stiffness.
-
Abstract Rapidly controlling and switching adhesion is necessary for applications in robotic gripping and locomotion, pick and place operations, and transfer printing. However, switchable adhesives often display a binary response (on or off) with a narrow adhesion range, lack post‐fabrication adhesion tunability, or switch slowly due to diffusion‐controlled processes. Here, pneumatically controlled shape and rigidity tuning is coupled to rapidly switch adhesion (≈0.1 s) across a wide range of programmable adhesion forces with measured switching ratios as high as 1300
x . The switchable adhesion system introduces an active polydimethylsiloxane membrane supported on a compliant, foam foundation with pressure‐tunable rigidity where positive and negative pneumatic pressure synergistically control contact stiffness and geometry to activate and release adhesion. Energy‐based modeling and finite element computation demonstrate that high adhesion is achieved through a pressure‐dependent, nonlinear stiffness of the foundation, while an inflated shape at positive pressures enables easy release. This approach enables adhesion‐based gripping and material assembly, which is utilized to pick‐and‐release common objects, rough and porous materials, and arrays of elements with a greater than 14 000x range in mass. The robust assembly of diverse components (rigid, soft, flexible) is then demonstrated to create a soft and stretchable electronic device. -
The ability to control adhesion on demand is important for a broad range of applications, including the gripping and manipulation of objects in robotics and manufacturing, and the temporary attachment of wearable devices. Despite recent advances in tunable adhesive materials, most existing solutions have modest adhesion strength and are limited by a compromise between the maximum and minimum adhesion, where increased strength prevents the release of lighter objects. To overcome these challenges, thermally responsive polymers, which can exhibit both high stiffness and a large reduction in stiffness via heating, have the potential to enable strong and tunable adhesion. Here, a microstructured composite adhesive with high strength (>2 MPa) and dynamically tunable adhesion (16×) is realized using a solvent‐assisted molding technique. The adhesive consists of an array of composite micropillars whose small scale and material composition enable strong and tunable adhesion. While thermally actuated systems often have slow response times, it is shown that miniaturization allows response times to be reduced to <1s for heating and <10s for cooling. These strong, fast, and dynamically tunable adhesives offer advantages over existing solutions and can be manufactured for practical adoption through the scalable solvent‐assisted molding technique.more » « lessFree, publicly-accessible full text available December 4, 2025
-
null (Ed.)Fibrillar adhesives composed of fibers with non-circular cross-sections and contacts, including squares and rectangles, offer advantages that include a larger real contact area when arranged in arrays and simplicity in fabrication. However, they typically have a lower adhesion strength compared to circular pillars due to a stress concentration at the corner of the non-circular contact. We investigate the adhesion of composite pillars with circular, square and rectangular cross-sections each consisting of a stiff pillar terminated by a thin compliant layer at the tip. Finite element mechanics modeling is used to assess differences in the stress distribution at the interface for the different geometries and the adhesion strength of different shape pillars is measured in experiments. The composite fibrillar structure results in a favorable stress distribution on the adhered interface that shifts the crack initiation site away from the edge for all of the cross-sectional contact shapes studied. The highest adhesion strength achieved among the square and rectangular composite pillars with various tip layer thicknesses is approximately 65 kPa. This is comparable to the highest strength measured for circular composite pillars and is about 6.5× higher than the adhesion strength of a homogenous square or rectangular pillar. The results suggest that a composite fibrillar adhesive structure with a local stress concentration at a corner can achieve comparable adhesion strength to a fibrillar structure without such local stress concentrations if the magnitude of the corner stress concentrations are sufficiently small such that failure does not initiate near the corners, and the magnitude of the peak interface stress away from the edge and the tip layer thickness are comparable.more » « less