skip to main content


Search for: All records

Award ID contains: 1830498

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The field of wearable robotics has made significant progress toward augmenting human functions from multimodal ambulation to manual lifting tasks. However, most of these systems are designed to be task-specific and only focus on a single type of movement (e.g., ambulation). In this work, we design, fabricate, and characterize a versatile hip exoskeleton testbed for lifting and ambulation tasks. The exoskeleton testbed is actuated with custom-built quasidirect drive actuators. We produce an orthotic interface to transmit high torques and assemble a custom mechatronic control system for the exoskeleton testbed. We also detail controllers for level ground walking, incline walking, and symmetric knee to waist lifting. We quantify the actuator torque tracking performance quantified through benchtop and human experiments. During knee-to-waist cyclic lifting, the powered condition exhibited a 16.7% reduction in net metabolic cost compared to the no exoskeleton condition (three subjects). For additional tasks (inclined walking, level-walking), the device provided metabolic reductions when compared with the unpowered case (single subject). These testbed results illustrate the potential for versatile hip assistance and can be used to design future optimized devices. 
    more » « less
    Free, publicly-accessible full text available December 5, 2024
  2. null (Ed.)
    Abstract In this study, we developed an offline, hierarchical intent recognition system for inferring the timing and direction of motion intent of a human operator when operating in an unstructured environment. There has been an increasing demand for robot agents to assist in these dynamic, rapid motions that are constantly evolving and require quick, accurate estimation of a user’s direction of travel. An experiment was conducted in a motion capture space with six subjects performing threat evasion in eight directions, and their mechanical and neuromuscular signals were recorded for use in our intent recognition system (XGBoost). Investigated against current, analytical methods, our system demonstrated superior performance with quicker direction of travel estimation occurring 140 ms earlier in the movement and a 11.6 deg reduction of error. The results showed that we could also predict the start of the movement 100 ms prior to the actual, thus allowing any physical systems to start up. Our direction estimation had an optimal performance of 8.8 deg, or 2.4% of the 360 deg range of travel, using three-axis kinetic data. The performance of other sensors and their combinations indicate that there are additional possibilities to obtain low estimation error. These findings are promising as they can be used to inform the design of a wearable robot aimed at assisting users in dynamic motions, while in environments with oncoming threats. 
    more » « less
  3. null (Ed.)