skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design and Validation of a Versatile High Torque Quasidirect Drive Hip Exoskeleton
The field of wearable robotics has made significant progress toward augmenting human functions from multimodal ambulation to manual lifting tasks. However, most of these systems are designed to be task-specific and only focus on a single type of movement (e.g., ambulation). In this work, we design, fabricate, and characterize a versatile hip exoskeleton testbed for lifting and ambulation tasks. The exoskeleton testbed is actuated with custom-built quasidirect drive actuators. We produce an orthotic interface to transmit high torques and assemble a custom mechatronic control system for the exoskeleton testbed. We also detail controllers for level ground walking, incline walking, and symmetric knee to waist lifting. We quantify the actuator torque tracking performance quantified through benchtop and human experiments. During knee-to-waist cyclic lifting, the powered condition exhibited a 16.7% reduction in net metabolic cost compared to the no exoskeleton condition (three subjects). For additional tasks (inclined walking, level-walking), the device provided metabolic reductions when compared with the unpowered case (single subject). These testbed results illustrate the potential for versatile hip assistance and can be used to design future optimized devices.  more » « less
Award ID(s):
1830498
PAR ID:
10478138
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE/ASME Transactions on Mechatronics
ISSN:
1083-4435
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robotic lower-limb exoskeletons can augment human mobility, but current systems require extensive, context-specific considerations, limiting their real-world viability. Here, we present a unified exoskeleton control framework that autonomously adapts assistance on the basis of instantaneous user joint moment estimates from a temporal convolutional network (TCN). When deployed on our hip exoskeleton, the TCN achieved an average root mean square error of 0.142 newton-meters per kilogram across 35 ambulatory conditions without any user-specific calibration. Further, the unified controller significantly reduced user metabolic cost and lower-limb positive work during level-ground and incline walking compared with walking without wearing the exoskeleton. This advancement bridges the gap between in-lab exoskeleton technology and real-world human ambulation, making exoskeleton control technology viable for a broad community. 
    more » « less
  2. Lower-limb exoskeletons have the potential to transform the way we move1,2,3,4,5,6,7,8,9,10,11,12,13,14, but current state-of-the-art controllers cannot accommodate the rich set of possible human behaviours that range from cyclic and predictable to transitory and unstructured. We introduce a task-agnostic controller that assists the user on the basis of instantaneous estimates of lower-limb biological joint moments from a deep neural network. By estimating both hip and knee moments in-the-loop, our approach provided multi-joint, coordinated assistance through our autonomous, clothing-integrated exoskeleton. When deployed during 28 activities, spanning cyclic locomotion to unstructured tasks (for example, passive meandering and high-speed lateral cutting), the network accurately estimated hip and knee moments with an average R2 of 0.83 relative to ground truth. Further, our approach significantly outperformed a best-case task classifier-based method constructed from splines and impedance parameters. When tested on ten activities (including level walking, running, lifting a 25 lb (roughly 11 kg) weight and lunging), our controller significantly reduced user energetics (metabolic cost or lower-limb biological joint work depending on the task) relative to the zero torque condition, ranging from 5.3 to 19.7%, without any manual controller modifications among activities. Thus, this task-agnostic controller can enable exoskeletons to aid users across a broad spectrum of human activities, a necessity for real-world viability. 
    more » « less
  3. Objective: Semi-active exoskeletons combining lightweight, low powered actuators and passive-elastic elements are a promising approach to portable robotic assistance during locomotion. Here, we introduce a novel semi-active hip exoskeleton concept and evaluate human walking performance across a range of parameters using a tethered robotic testbed. Methods : We emulated semi-active hip exoskeleton (exo) assistance by applying a virtual torsional spring with a fixed rotational stiffness and an equilibrium angle established in terminal swing phase (i.e., via pre-tension into stance). We performed a 2-D sweep of spring stiffness x equilibrium position parameters (30 combinations) across walking speed (1.0, 1.3, and 1.6 m/s) and measured metabolic rate to identify device parameters for optimal metabolic benefit. Results : At each speed, optimal exoskeleton spring settings provided a ∼10% metabolic benefit compared to zero-impedance (ZI). Higher walking speeds required higher exoskeleton stiffness and lower equilibrium angle for maximal metabolic benefit. Optimal parameters tuned to each individual (user-dependent) provided significantly larger metabolic benefit than the average-best settings (user-independent) at all speeds except the fastest (p = 0.021, p = 0.001, and p = 0.098 at 1.0, 1.3, and 1.6 m/s, respectively). We found significant correlation between changes in user's muscle activity and changes in metabolic rate due to exoskeleton assistance, especially for muscles crossing the hip joint. Conclusion : A semi-active hip exoskeleton with spring-parameters personalized to each user could provide metabolic benefit across functional walking speeds. Minimizing muscle activity local to the exoskeleton is a promising approach for tuning assistance on-line on a user-dependent basis. 
    more » « less
  4. Research on robotic lower-limb assistive devices over the past decade has generated autonomous, multiple degree-of-freedom devices to augment human performance during a variety of scenarios. However, the increase in capabilities of these devices is met with an increase in the complexity of the overall control problem and requirement for an accurate and robust sensing modality for intent recognition. Due to its ability to precede changes in motion, surface electromyography (EMG) is widely studied as a peripheral sensing modality for capturing features of muscle activity as an input for control of powered assistive devices. In order to capture features that contribute to muscle contraction and joint motion beyond muscle activity of superficial muscles, researchers have introduced sonomyography, or real-time dynamic ultrasound imaging of skeletal muscle. However, the ability of these sonomyography features to continuously predict multiple lower-limb joint kinematics during widely varying ambulation tasks, and their potential as an input for powered multiple degree-of-freedom lower-limb assistive devices is unknown. The objective of this research is to evaluate surface EMG and sonomyography, as well as the fusion of features from both sensing modalities, as inputs to Gaussian process regression models for the continuous estimation of hip, knee and ankle angle and velocity during level walking, stair ascent/descent and ramp ascent/descent ambulation. Gaussian process regression is a Bayesian nonlinear regression model that has been introduced as an alternative to musculoskeletal model-based techniques. In this study, time-intensity features of sonomyography on both the anterior and posterior thigh along with time-domain features of surface EMG from eight muscles on the lower-limb were used to train and test subject-dependent and task-invariant Gaussian process regression models for the continuous estimation of hip, knee and ankle motion. Overall, anterior sonomyography sensor fusion with surface EMG significantly improved estimation of hip, knee and ankle motion for all ambulation tasks (level ground, stair and ramp ambulation) in comparison to surface EMG alone. Additionally, anterior sonomyography alone significantly improved errors at the hip and knee for most tasks compared to surface EMG. These findings help inform the implementation and integration of volitional control strategies for robotic assistive technologies. 
    more » « less
  5. High-performance actuators are crucial to enable mechanical versatility of wearable robots, which are required to be lightweight, highly backdrivable, and with high bandwidth. State-of-the-art actuators, e.g., series elastic actuators (SEAs), have to compromise bandwidth to improve compliance (i.e., backdrivability). We describe the design and human-robot interaction modeling of a portable hip exoskeleton based on our custom quasi-direct drive (QDD) actuation (i.e., a high torque density motor with low ratio gear). We also present a model-based performance benchmark comparison of representative actuators in terms of torque capability, control bandwidth, backdrivability, and force tracking accuracy. This paper aims to corroborate the underlying philosophy of “design for control“, namely meticulous robot design can simplify control algorithms while ensuring high performance. Following this idea, we create a lightweight bilateral hip exoskeleton to reduce joint loadings during normal activities, including walking and squatting. Experiments indicate that the exoskeleton is able to produce high nominal torque (17.5 Nm), high backdrivability (0.4 Nm backdrive torque), high bandwidth (62.4 Hz), and high control accuracy (1.09 Nm root mean square tracking error, 5.4% of the desired peak torque). Its controller is versatile to assist walking at different speeds and squatting. This work demonstrates performance improvement compared with state-of-the-art exoskeletons. 
    more » « less