skip to main content


Search for: All records

Award ID contains: 1831682

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Current and future optical and near-infrared wide-field surveys have the potential to find kilonovae, the optical and infrared counterparts to neutron star mergers, independently of gravitational-wave or high-energy gamma-ray burst triggers. The ability to discover fast and faint transients such as kilonovae largely depends on the area observed, the depth of those observations, the number of revisits per field in a given time frame, and the filters adopted by the survey; it also depends on the ability to perform rapid follow-up observations to confirm the nature of the transients. In this work, we assess kilonova detectability in existing simulations of the Legacy Survey of Space and Time strategy for the Vera C. Rubin Wide Fast Deep survey, with focus on comparing rolling to baseline cadences. Although currently available cadences can enable the detection of >300 kilonovae out to ∼1400 Mpc over the 10 year survey, we can expect only 3–32 kilonovae similar to GW170817 to be recognizable as fast-evolving transients. We also explore the detectability of kilonovae over the plausible parameter space, focusing on viewing angle and ejecta masses. We find that observations in redderizybands are crucial for identification of nearby (within 300 Mpc) kilonovae that could be spectroscopically classified more easily than more distant sources. Rubin’s potential for serendipitous kilonova discovery could be increased by gain of efficiency with the employment of individual 30 s exposures (as opposed to 2 × 15 s snap pairs), with the addition of red-band observations coupled with same-night observations ingorrbands, and possibly with further development of a new rolling-cadence strategy.

     
    more » « less
  2. We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z  = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus- Wind , we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of E iso = 1.27 −0.19 +0.20 × 10 54 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus- Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t  ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z  > 6 known to date. By assuming a number density n  = 1 cm −3 and an efficiency η  = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z  ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 10 52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. 
    more » « less
  3. Abstract The current data acquisition rate of astronomical transient surveys and the promise for significantly higher rates in the next decade necessitate the development of novel approaches to analyze astronomical data sets and promptly detect objects of interest. The Deeper, Wider, Faster (DWF) program is a survey focused on the identification of fast-evolving transients, such as fast radio bursts, gamma-ray bursts, and supernova shock breakouts. It employs multifrequency simultaneous coverage of the same part of the sky over several orders of magnitude. Using the Dark Energy Camera mounted on the 4 m Blanco telescope, DWF captures a 20 s g -band exposure every minute, at a typical seeing of ∼1″ and an air mass of ∼1.5. These optical data are collected simultaneously with observations conducted over the entire electromagnetic spectrum—from radio to γ -rays—as well as cosmic-ray observations. In this paper, we present a novel real-time light-curve analysis algorithm, designed to detect transients in the DWF optical data; this algorithm functions independently from, or in conjunction with, image subtraction. We present a sample of fast transients detected by our algorithm, as well as a false-positive analysis. Our algorithm is customizable and can be tuned to be sensitive to transients evolving over different timescales and flux ranges. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)