Abstract Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galacticr-process enrichment, among other astrophysical topics. However, robust constraints on heavy element production require rapid kilonova detection (within ∼1 day of merger) as well as multiwavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide-field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out toz∼ 1 within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatory’s LSST, ULTRASAT, VISTA, and WINTER can observe some kilonovae out toz∼ 0.1 (∼475 Mpc), while DDOTI, MeerLICHT, PRIME, Swift/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following nondetections and explore variation in detectability with these ejecta parameters.
more »
« less
Optimizing Cadences with Realistic Light-curve Filtering for Serendipitous Kilonova Discovery with Vera Rubin Observatory
Abstract Current and future optical and near-infrared wide-field surveys have the potential to find kilonovae, the optical and infrared counterparts to neutron star mergers, independently of gravitational-wave or high-energy gamma-ray burst triggers. The ability to discover fast and faint transients such as kilonovae largely depends on the area observed, the depth of those observations, the number of revisits per field in a given time frame, and the filters adopted by the survey; it also depends on the ability to perform rapid follow-up observations to confirm the nature of the transients. In this work, we assess kilonova detectability in existing simulations of the Legacy Survey of Space and Time strategy for the Vera C. Rubin Wide Fast Deep survey, with focus on comparing rolling to baseline cadences. Although currently available cadences can enable the detection of >300 kilonovae out to ∼1400 Mpc over the 10 year survey, we can expect only 3–32 kilonovae similar to GW170817 to be recognizable as fast-evolving transients. We also explore the detectability of kilonovae over the plausible parameter space, focusing on viewing angle and ejecta masses. We find that observations in redderizybands are crucial for identification of nearby (within 300 Mpc) kilonovae that could be spectroscopically classified more easily than more distant sources. Rubin’s potential for serendipitous kilonova discovery could be increased by gain of efficiency with the employment of individual 30 s exposures (as opposed to 2 × 15 s snap pairs), with the addition of red-band observations coupled with same-night observations ingorrbands, and possibly with further development of a new rolling-cadence strategy.
more »
« less
- Award ID(s):
- 1831682
- PAR ID:
- 10360862
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 258
- Issue:
- 1
- ISSN:
- 0067-0049
- Format(s):
- Medium: X Size: Article No. 5
- Size(s):
- Article No. 5
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Wide-Field Infrared Transient Explorer (WINTER) is a new 1 deg2seeing-limited time-domain survey instrument designed for dedicated near-infrared follow-up of kilonovae from binary neutron star (BNS) and neutron star–black hole mergers. WINTER will observe in the near-infraredY,J, and short-Hbands (0.9–1.7μm, toJAB= 21 mag) on a dedicated 1 m telescope at Palomar Observatory. To date, most prompt kilonova follow-up has been in optical wavelengths; however, near-infrared emission fades more slowly and depends less on geometry and viewing angle than optical emission. We present an end-to-end simulation of a follow-up campaign during the fourth observing run (O4) of the LIGO, Virgo, and KAGRA interferometers, including simulating 625 BNS mergers, their detection in gravitational waves, low-latency and full parameter estimation skymaps, and a suite of kilonova lightcurves from two different model grids. We predict up to five new kilonovae independently discovered by WINTER during O4, given a realistic BNS merger rate. Using a larger grid of kilonova parameters, we find that kilonova emission is ≈2 times longer lived and red kilonovae are detected ≈1.5 times further in the infrared than in the optical. For 90% localization areas smaller than 150 (450) deg2, WINTER will be sensitive to more than 10% of the kilonova model grid out to 350 (200) Mpc. We develop a generalized toolkit to create an optimal BNS follow-up strategy with any electromagnetic telescope and present WINTER’s observing strategy with this framework. This toolkit, all simulated gravitational-wave events, and skymaps are made available for use by the community.more » « less
-
While optical surveys regularly discover slow transients like supernovae on their own, the most common way to discover extragalactic fast transients, fading away in a few nights, is via follow-up observations of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to also identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to faint and fast-fading objects as kilonovae, the optical counterparts to binary neutron stars and neutron star-black hole mergers, out to almost 200Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast optical transients in ZTF data. Using the ZTF alert stream combined with forced photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering of follow-up systems, such as Las Cumbres Observatory, has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independent of any external trigger (though some counterparts were identified later), including at least one supernova with post-shock cooling emission, two known afterglows with an associated gamma-ray burst, two known afterglows without any known gamma-ray counterpart, and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, and ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects which appear to be kilonovae; therefore, we constrain the rate of GW170817-like kilonovae to R<900Gpc−3yr−1. A framework such as ZTFReST could become a prime tool for kilonova and fast transient discovery with the Vera C. Rubin Observatory.more » « less
-
ABSTRACT Fulfilling the rich promise of rapid advances in time-domain astronomy is only possible through confronting our observations with physical models and extracting the parameters that best describe what we see. Here, we introduce redback; a Bayesian inference software package for electromagnetic transients. redback provides an object-orientated python interface to over 12 different samplers and over 100 different models for kilonovae, supernovae, gamma-ray burst afterglows, tidal disruption events, engine-driven transients among other explosive transients. The models range in complexity from simple analytical and semi-analytical models to surrogates built upon numerical simulations accelerated via machine learning. redback also provides a simple interface for downloading and processing data from various catalogues such as Swift and FINK. The software can also serve as an engine to simulate transients for telescopes such as the Zwicky Transient Facility and Vera Rubin with realistic cadences, limiting magnitudes, and sky coverage or a hypothetical user-constructed survey or a generic transient for target-of-opportunity observations with different telescopes. As a demonstration of its capabilities, we show how redback can be used to jointly fit the spectrum and photometry of a kilonova, enabling a more powerful, holistic probe into the properties of a transient. We also showcase general examples of how redback can be used as a tool to simulate transients for realistic surveys, fit models to real, simulated, or private data, multimessenger inference with gravitational waves, and serve as an end-to-end software toolkit for parameter estimation and interpreting the nature of electromagnetic transients.more » « less
-
Abstract We present the Keck Infrared Transient Survey, a NASA Key Strategic Mission Support program to obtain near-infrared (NIR) spectra of astrophysical transients of all types, and its first data release, consisting of 105 NIR spectra of 50 transients. Such a data set is essential as we enter a new era of IR astronomy with the James Webb Space Telescope (JWST) and the upcoming Nancy Grace Roman Space Telescope (Roman). NIR spectral templates will be essential to search JWST images for stellar explosions of the first stars and to plan an effective Roman SN Ia cosmology survey, both key science objectives for mission success. Between 2022 February and 2023 July, we systematically obtained 274 NIR spectra of 146 astronomical transients, representing a significant increase in the number of available NIR spectra in the literature. Here, we describe the first release of data from the 2022A semester. We systematically observed three samples: a flux-limited sample that includes all transients <17 mag in a red optical band (usually ZTFror ATLASobands); a volume-limited sample including all transients within redshiftz< 0.01 (D≈ 50 Mpc); and an SN Ia sample targeting objects at phases and light-curve parameters that had scant existing NIR data in the literature. The flux-limited sample is 39% complete (60% excluding SNe Ia), while the volume-limited sample is 54% complete and is 79% complete toz= 0.005. Transient classes observed include common Type Ia and core-collapse supernovae, tidal disruption events, luminous red novae, and the newly categorized hydrogen-free/helium-poor interacting Type Icn supernovae. We describe our observing procedures and data reduction usingPypeIt, which requires minimal human interaction to ensure reproducibility.more » « less