Abstract We examined how climate variability affects the mobilization of material from six watersheds. We analyzed one to seven years of high‐frequency sensor data from a temperate ecosystem and a tropical rainforest. We applied a windowed analysis to correlate concentration‐discharge (C‐Q) behavior with climate anomalies, providing insight into how hydrological and biogeochemical processes change in response to climate variability. Positive precipitation anomalies homogenized the C‐Q responses for dissolved organic matter, nitrate, specific conductance and turbidity, indicating that hydrological processes dominate the C‐Q signal and watersheds act as “conveyor belts” of material. In contrast, drier and warmer conditions led to C‐Q behavior associated with variation in solute concentration, suggesting that biogeochemical processes are a primary control on solute export and their response to flow. Results indicate that climate variability can move watersheds along a continuum from transporter‐to‐transformer of biologically active solutes and responses can potentially vary by biome.
more »
« less
Persistent and lagged effects of fire on stream solutes linked to intermittent precipitation in arid lands
Abstract Increased occurrence, size, and intensity of fire result in significant but variable changes to hydrology and material retention in watersheds with concomitant effects on stream biogeochemistry. In arid regions, seasonal and episodic precipitation results in intermittency in flows connecting watersheds to recipient streams that can delay the effects of fire on stream chemistry. We investigated how the spatial extent of fire within watersheds interacts with variability in amount and timing of precipitation to influence stream chemistry of three forested, montane watersheds in a monsoonal climate and four coastal, chaparral watersheds in a Mediterranean climate. We applied state-space models to estimate effects of precipitation, fire, and their interaction on stream chemistry up to five years following fire using 15 + years of monthly observations. Precipitation alone diluted specific conductance and flushed nitrate and phosphate to Mediterranean streams. Fire had positive and negative effects on specific conductance in both climates, whereas ammonium and nitrate concentrations increased following fire in Mediterranean streams. Fire and precipitation had positive interactive effects on specific conductance in monsoonal streams and on ammonium in Mediterranean streams. In most cases, the effects of fire and its interaction with precipitation persisted or were lagged 2–5 years. These results suggest that precipitation influences the timing and intensity of the effects of fire on stream solute dynamics in aridland watersheds, but these responses vary by climate, solute, and watershed characteristics. Time series models were applied to data from long-term monitoring that included observations before and after fire, yielding estimated effects of fire on aridland stream chemistry. This statistical approach captured effects of local-scale temporal variation, including delayed responses to fire, and may be used to reduce uncertainty in predicted responses of water quality under changing fire and precipitation regimes of arid lands.
more »
« less
- PAR ID:
- 10513079
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Biogeochemistry
- Volume:
- 167
- Issue:
- 6
- ISSN:
- 1573-515X
- Format(s):
- Medium: X Size: p. 777-791
- Size(s):
- p. 777-791
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Temporal patterns in chemistry of headwater streams reflect responses of water and elemental cycles to perturbations occurring at local to global scales. We evaluated multi-scale temporal patterns in up to 32 y of monthly observations of stream chemistry (ammonium, calcium, dissolved organic carbon, nitrate, total dissolved phosphorus, and sulfate) in 22 reference catchments within the northern temperate zone of North America. Multivariate autoregressive state-space (MARSS) models were applied to quantify patterns at multi-decadal, seasonal, and shorter intervals during a period that encompassed warming climate, seasonal changes in precipitation, and regional declines in atmospheric deposition. Significant long-term trends in solute concentrations within a subset of the catchments were consistent with recovery from atmospheric deposition (e.g., calcium, nitrate, sulfate) and increased precipitation (e.g., dissolved organic carbon). Lack of evidence for multi-decadal trends in most catchments suggests resilience of northern temperate ecosystems or that subtle net effects of simultaneous changes in climate and disturbance regimes do not result in directional trends. Synchronous seasonal oscillations of solute concentrations occurred across many catchments, reflecting shared climate and biotic drivers of seasonality within the northern temperate zone. Despite shared patterns among catchments at a seasonal scale, multi-scale temporal patterns were statistically distinct among even adjacent headwater catchments, implying that local attributes of headwater catchments modify the signals imparted by atmospheric phenomena and regional disturbances. To effectively characterize hydrologic and biogeochemical responses to changing climate and disturbance regimes, catchment monitoring programs could include multiple streams with contributing areas that encompass regional heterogeneity in vegetation, topography, and elevation. Overall, detection of long-term patterns and trends requires monitoring multiple catchments at a frequency that captures periodic variation (e.g., seasonality) and a duration encompassing the perturbations of interest.more » « less
-
Wildfires are a worldwide disturbance with unclear implications for stream water quality. We examined stream water chemistry responses immediately (<1 month) following a wildfire by measuring over 40 constituents in four gauged coastal watersheds that burned at low to moderate severity. Three of the four watersheds also had pre‐fire concentration‐discharge data for 14 constituents: suspended sediment (SSfine), dissolved organic and inorganic carbon (DOC, DIC), specific UV absorbance (SUVA), major ions (Ca2+, K+, Mg2+, Na+, Cl−, SO42−, NO3−, F−), and select trace elements (total dissolved Mn, Fe). In all watersheds, post‐fire stream water concentrations of SSfine, DOC, Ca2+, Cl−, and changed when compared to pre‐fire data. Post‐fire changes in , K+, Na+, Mg2+, DIC, SUVA, and total dissolved Fe were also found for at least two of the three streams. For constituents with detectable responses to wildfire, post‐fire changes in the slopes of concentration‐discharge relationships commonly resulted in stronger enrichment trends or weaker dilution trends, suggesting that new contributing sources were surficial or near the surface. However, a few geogenic solutes, Ca2+, Mg2+, and DIC, displayed stronger dilution trends at nearly all sites post‐fire. Moreover, fire‐induced constituent concentration changes were highly discharge and site‐dependent. These similarities and differences in across‐site stream water chemistry responses to wildfire emphasize the need for a deeper understanding of landscape‐scale changes to solute sources and pathways. Our findings also highlight the importance of being explicit about reference points for both stream discharge and pre‐fire stream water chemistry in post‐fire assessment of concentration changes.more » « less
-
Abstract Large‐scale wildfires are becoming increasingly common in the wet forests of the Pacific Northwest (USA), with predicted increases in fire prevalence under future climate scenarios. Wildfires can alter streamflow response to precipitation and mobilize water quality constituents, which pose a risk to aquatic ecosystems and downstream drinking water treatment. Research often focuses on the impacts of high‐severity wildfires, with stream biogeochemical responses to low‐ and mixed‐severity fires often understudied, particularly during seasonal shifts in hydrologic connectivity between hillslopes and streams. We studied the impacts of the 2020 Holiday Farm Fire at the HJ Andrews Experimental Forest where rare pre‐fire stream discharge and chemistry data allowed us to evaluate the influence of mixed‐severity fire on stream water quantity and quality. Our research design focused on two well‐studied watersheds with low and low‐moderate burn severity where we examined long‐term data (pre‐ and post‐fire), and instantaneous grab samples collected during four rain events occurring immediately following wildfire and a prolonged dry summer. We analysed the impact of these rain events, which represent the transition from low‐to‐high hydrologic connectivity of the subsurface to the stream, on stream discharge and chemistry behaviour. Long‐term data revealed total annual flows and mean flows remained fairly consistent post‐fire, while small increases in baseflow were observed in the low‐moderately burned watershed. Stream water concentrations of nitrate, phosphate and sulfate significantly increased following fire, with variance in concentration increasing with fire severity. Our end member mixing models suggested that during rain events, the watershed with low‐moderate severity fire had greater streamflow inputs from soil water and groundwater during times of low connectivity compared to the watershed with low severity fire. Finally, differences in fire severity impacts on concentration‐discharge relationships of biogenic solutes were most expressed under low catchment connectivity conditions. Our study provides insights into post‐wildfire impacts to stream water quality, with the goal of informing future research on stream chemistry responses to low, moderate and mixed severity wildfire.more » « less
-
Abstract High latitude regions across the globe are undergoing severe modifications due to changing climate. A high latitude region of concern is the Gulf of Alaska (GoA), where these changes in hydroclimate undoubtedly affect the hydrogeochemistry of freshwater discharging to the nearshore ecosystems of the region. To fill the knowledge gap of our understanding of freshwater stream geochemistry with the GoA, we compile stream water chemistry data from 162 stream sites across the region. With an inverse model, we estimate fractional contributions to solute fluxes from weathering of silicate, carbonate, and sulfide minerals, and precipitation. We assess weathering rates across the region and compare them against global river yields. The median fractional contribution of carbonate weathering to total weathering products is 78% across all stream sites; however, there are several streams where silicate weathering is a dominant source of solutes. Weathering by sulfuric acid is elevated in glacierized watersheds. Finally, cation weathering rates are lower in GoA streams compared to the world's largest rivers; however, weathering rates are similar when compared to a global dataset of glacier fed streams. We suggest that hydrologic changes driven by glacier ice loss and increased precipitation will alter river water quality and chemical weathering regimes such that silicate weathering may become a more important source of solutes and sulfide oxidation may decrease. This contribution provides a platform to build from for future investigations into changes to stream water chemistry in the region and other high latitude watersheds.more » « less
An official website of the United States government
