skip to main content

Search for: All records

Award ID contains: 1832635

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 30, 2024
  2. Free, publicly-accessible full text available September 1, 2023
  3. In this study, we utilize an input–output (I–O) model to perform an ex-post analysis of the COVID-19 pandemic workforce disruptions in the Philippines. Unlike most disasters that debilitate physical infrastructure systems, the impact of disease pandemics like COVID-19 is mostly concentrated on the workforce. Workforce availability was adversely affected by lockdowns as well as by actual illness. The approach in this paper is to use Philippine I–O data for multiple years and generate Dirichlet probability distributions for the Leontief requirements matrix (i.e., the normalized sectoral transactions matrix) to address uncertainties in the parameters. Then, we estimated the workforce dependency ratio based on a literature survey and then computed the resilience index in each economic sector. For example, sectors that depend heavily on the physical presence of their workforce (e.g., construction, agriculture, manufacturing) incur more opportunity losses compared to sectors where workforce can telework (e.g., online retail, education, business process outsourcing). Our study estimated the 50th percentile economic losses in the range of PhP 3.3 trillion (with telework) to PhP 4.8 trillion (without telework), which is consistent with independently published reports. The study provides insights into the direct and indirect economic impacts of workforce disruptions in emerging economies and will contributemore »to the general domain of disaster risk management.« less
    Free, publicly-accessible full text available August 1, 2023
  4. Abstract This research measures the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising of non-pharmaceutical interventions. A detailed disease model of COVID-19 is combined with a model of the US economy to estimate the direct impact of labor supply shock to each sector arising from morbidity, mortality, and lockdown, as well as the indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of jobs that are workable from home in each sector are used to modify the shock to labor supply. Results show trade-offs between economic losses, and lives saved and infections averted are non-linear in compliance to social distancing and the duration of the lockdown. Sectors that are worst hit are not the labor-intensive sectors such as the Agriculture sector and the Construction sector, but the ones with high valued jobs such as the Professional Services, even after the teleworkability of jobs is accounted for. Additionally, the findings show that a low compliance to interventions can be overcome by a longer shutdown period and vice versa to arrive at similar epidemiological impact but their net effect on economic loss depends on the interplay between the marginal gains from avertingmore »infections and deaths, versus the marginal loss from having healthy workers stay at home during the shutdown.« less
  5. Water is a critical natural resource that sustains the productivity of many economic sectors, whether directly or indirectly. Climate change alongside rapid growth and development are a threat to water sustainability and regional productivity. In this paper, we develop an extension to the economic input-output model to assess the impact of water supply disruptions to regional economies. The model utilizes the inoperability variable, which measures the extent to which an infrastructure system or economic sector is unable to deliver its intended output. While the inoperability concept has been utilized in previous applications, this paper offers extensions that capture the time-varying nature of inoperability as the sectors recover from a disruptive event, such as drought. The model extension is capable of inserting inoperability adjustments within the drought timeline to capture time-varying likelihoods and severities, as well as the dependencies of various economic sectors on water. The model was applied to case studies of severe drought in two regions: (1) the state of Massachusetts (MA) and (2) the US National Capital Region (NCR). These regions were selected to contrast drought resilience between a mixed urban–rural region (MA) and a highly urban region (NCR). These regions also have comparable overall gross domestic productsmore »despite significant differences in the distribution and share of the economic sectors comprising each region. The results of the case studies indicate that in both regions, the utility and real estate sectors suffer the largest economic loss; nonetheless, results also identify region-specific sectors that incur significant losses. For the NCR, three sectors in the top 10 ranking of highest economic losses are government-related, whereas in the MA, four sectors in the top 10 are manufacturing sectors. Furthermore, the accommodation sector has also been included in the NCR case intuitively because of the high concentration of museums and famous landmarks. In contrast, the Wholesale Trade sector was among the sectors with the highest economic losses in the MA case study because of its large geographic size conducive for warehouses used as nodes for large-scale supply chain networks. Future modeling extensions could potentially include analysis of water demand and supply management strategies that can enhance regional resilience against droughts. Other regional case studies can also be pursued in future efforts to analyze various categories of drought severity beyond the case studies featured in this paper.« less
  6. To manage limited resources available to protect against cybersecurity threats, organizations must use risk management approach to prioritize investments in protection capabilities. Currently, there is no commonly accepted methodology for cybersecurity professionals that considers one of the key elements of risk function - threat landscape - to identify gaps (blinds spots) where cybersecurity protections do not exist and where future investments are needed. This paper discusses a new, threat-based approach for evaluation of cybersecurity architectures that allows organizations to look at their cybersecurity protections from the standpoint of an adversary. The approach is based on a methodology developed by the Department of Defense and further expanded by the Department of Homeland Security. The threat-based approach uses a cyber threat framework to enumerate all threat actions previously observed in the wild and scores protections (cybersecurity architectural capabilities) against each threat action for their ability to: a) detect; b) protect against; and c) help in recovery from the threat action. The answers form a matrix called capability coverage map - a visual representation of protections coverage, gaps, and overlaps against threats. To allow for prioritization, threat actions can be organized in a threat heat map - a visual representation of threat actions'more »prevalence and maneuverability that can be overlaid on top of a coverage map. The paper demonstrates a new threat modeling methodology and recommends future research to establish a decision-making framework for designing cybersecurity architectures (capability portfolios) that maximize protections (described as coverage in terms of protect, detect, and respond functions) against known cybersecurity threats.« less