- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chwatko, Malgorzata (1)
-
Darby, Daniel R. (1)
-
Darby, Daniel_R (1)
-
Holten‐Andersen, Niels (1)
-
Lai, Erica (1)
-
Pham, Jonathan T. (1)
-
Pham, Jonathan_T (1)
-
Stephens, Lauren F. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Metal‐coordinated hydrogels can form a percolated network with transient bonds due to metal ions‐functional group coordination. Each metal ion can link with more than one ligand, leading to intricate speciation of bonding modes. While the mechanics of transient gels made with four‐arm polymers are often studied, less is known about how increasing the number of arms affects the modulus. Using shear rheology, the modulus of hydrogels prepared from four‐, six‐, and eight‐armed poly(ethylene glycols), functionalized with histidine ligands that complex with nickel (II) ions is measured. These gels have matched polymer wt.% and varied pH to compare their moduli. It is considered whether the modulus can be described by established polymer network models by calculating the speciation of metal‐coordinated cross‐links and then incorporating it into a phantom network prediction. This study finds that 1) increasing the number of polymer arms increases the modulus, 2) the phantom network allows reasonable modulus approximation for four‐arm and six‐arm gels, and 3) the modulus of eight‐arm gels exceeds the phantom network prediction. Since polymer cores act as chemical cross‐links and metal‐coordinated cross‐links form network strands, it is possible that increasing the number of metal‐coordinated linkages per molecule reinforces the chemical cross‐link at the polymer core.more » « less
-
Darby, Daniel_R; Lai, Erica; Holten‐Andersen, Niels; Pham, Jonathan_T (, Advanced Materials Interfaces)Abstract In fully transient, mussel‐inspired hydrogels, metal‐coordinate complexes form supramolecular crosslinks, which offer tunable viscoelastic properties and mechanical reversibility. The metal‐coordination complexation that comprises the crosslinks can take on tris‐, bis‐, mono‐, and free‐state modalities (3, 2, 1, or 0 ligands per ion, respectively). Although prior work has established relationships between network crosslinking and mechanical properties, the effect of crosslink and ligand modalities on gel‐surface adhesion is not well understood for fully transient hydrogels. Using glass and nickel‐coated spherical probes, the effect of network crosslinking modalities on the adhesive strength of hydrogels based on histidine‐Ni2+and nitrodopamine‐Fe3+ion crosslinks is investigated. Since crosslink modalities have a strong impact on the mechanical properties of the bulk network, it is first determined how adhesion relates to the mechanical properties, regardless of the distribution of crosslinking modalities and ligand type. It is ultimately found that the peak adhesive stress increases with decreasing percentage of ligands in tris‐crosslinks.more » « less
An official website of the United States government
