Abstract The incorporation of a secondary network into traditional single‐network hydrogels can enhance mechanical properties, such as toughness and loading to failure. These features are important for many applications, including as biomedical materials; however, the processing of interpenetrating polymer network (IPN) hydrogels is often limited by their multistep fabrication procedures. Here, a one‐pot scheme for the synthesis of biopolymer IPN hydrogels mediated by the simultaneous crosslinking of two independent networks with light, namely: i) free‐radical crosslinking of methacrylate‐modified hyaluronic acid (HA) to form the primary network and ii) thiol–ene crosslinking of norbornene‐modified HA with thiolated guest–host assemblies of adamantane and β‐cyclodextrin to form the secondary network, is reported. The mechanical properties of the IPN hydrogels are tuned by changing the network composition, with high water content (≈94%) hydrogels exhibiting excellent work of fracture, tensile strength, and low hysteresis. As proof‐of‐concept, the IPN hydrogels are implemented as low‐viscosity Digital Light Processing resins to fabricate complex structures that recover shape upon loading, as well as in microfluidic devices to form deformable microparticles. Further, the IPNs are cytocompatible with cell adhesion dependent on the inclusion of adhesive peptides. Overall, the enhanced processing of these IPN hydrogels will expand their utility across applications.
more »
« less
Interfacial Adhesion of Fully Transient, Mussel‐Inspired Hydrogels with Different Network Crosslink Modalities
Abstract In fully transient, mussel‐inspired hydrogels, metal‐coordinate complexes form supramolecular crosslinks, which offer tunable viscoelastic properties and mechanical reversibility. The metal‐coordination complexation that comprises the crosslinks can take on tris‐, bis‐, mono‐, and free‐state modalities (3, 2, 1, or 0 ligands per ion, respectively). Although prior work has established relationships between network crosslinking and mechanical properties, the effect of crosslink and ligand modalities on gel‐surface adhesion is not well understood for fully transient hydrogels. Using glass and nickel‐coated spherical probes, the effect of network crosslinking modalities on the adhesive strength of hydrogels based on histidine‐Ni2+and nitrodopamine‐Fe3+ion crosslinks is investigated. Since crosslink modalities have a strong impact on the mechanical properties of the bulk network, it is first determined how adhesion relates to the mechanical properties, regardless of the distribution of crosslinking modalities and ligand type. It is ultimately found that the peak adhesive stress increases with decreasing percentage of ligands in tris‐crosslinks.
more »
« less
- Award ID(s):
- 1832889
- PAR ID:
- 10449721
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 8
- Issue:
- 14
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The extracellular matrix (ECM) is a complex, hierarchical material containing structural and bioactive components. This complexity makes decoupling the effects of biomechanical properties and cell-matrix interactions difficult, especially when studying cellular processes in a 3D environment. Matrix mechanics and cell adhesion are both known regulators of specific cellular processes such as stem cell proliferation and differentiation. However, more information is required about how such variables impact various neural lineages that could, upon transplantation, therapeutically improve neural function after a central nervous system injury or disease. Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) hydrogels are one biomaterial approach to meet these goals, consisting of a family of peptide sequences that assemble into physical hydrogels in physiological media. In this study, we studied our previously reported supramolecularly-assembling RAPID hydrogels functionalized with the ECM-derived cell-adhesive peptide ligands RGD, IKVAV, and YIGSR. Using molecular dynamics simulations and experimental rheology, we demonstrated that these integrin-binding ligands at physiological concentrations (3–12 mm) did not impact the assembly of the KYFIL peptide system. In simulations, molecular measures of assembly such as hydrogen bonding and pi-pi interactions appeared unaffected by cell-adhesion sequence or concentration. Visualizations of clustering and analysis of solvent-accessible surface area indicated that the integrin-binding domains remained exposed. KYFIL or AYFIL hydrogels containing 3 mm of integrin-binding domains resulted in mechanical properties consistent with their non-functionalized equivalents. This strategy of doping RAPID gels with cell-adhesion sequences allows for the precise tuning of peptide ligand concentration, independent of the rheological properties. The controllability of the RAPID hydrogel system provides an opportunity to investigate the effect of integrin-binding interactions on encapsulated neural cells to discern how hydrogel microenvironment impacts growth, maturation, or differentiation.more » « less
-
Abstract Dynamic hydrogel crosslinking captures network reorganization and self‐healing of natural materials, yet is often accompanied by reduced mechanical properties compared to covalent analogs. Toughening is possible in certain materials with processing by directional freeze‐casting and salting‐out, producing hierarchically organized networks with directionally enhanced mechanical properties. The implications of including dynamic supramolecular crosslinking alongside such processes are unclear. Here, a supramolecular hydrogel prepared from homoternary crosslinking by pendant guests with a free macrocycle is subsequently processed by directional freeze‐casting and salting‐out. The resulting hydrogels tolerate multiple cycles of compression. Excitingly, supramolecular affinity dictates the mechanical properties of the bulk hydrogels, with higher affinity interactions producing materials with higher Young's modulus and enhanced toughness under compression. The importance of supramolecular crosslinking is emphasized with a supramolecular complex that is converted in situ into a covalent crosslink. While supramolecular hydrogels do not fracture and spontaneously self‐heal when cut, their covalent analogs fracture under moderate strain and do not self‐heal. This work shows a molecular‐scale origin of bulk hydrogel toughening attributed to affinity and dynamics of supramolecular crosslinking, offering synergy in combination with bulk post‐processing techniques to yield materials with enhanced mechanical properties tunable at the molecular scale for the needs of specific applications.more » « less
-
Abstract Metal‐coordinated hydrogels can form a percolated network with transient bonds due to metal ions‐functional group coordination. Each metal ion can link with more than one ligand, leading to intricate speciation of bonding modes. While the mechanics of transient gels made with four‐arm polymers are often studied, less is known about how increasing the number of arms affects the modulus. Using shear rheology, the modulus of hydrogels prepared from four‐, six‐, and eight‐armed poly(ethylene glycols), functionalized with histidine ligands that complex with nickel (II) ions is measured. These gels have matched polymer wt.% and varied pH to compare their moduli. It is considered whether the modulus can be described by established polymer network models by calculating the speciation of metal‐coordinated cross‐links and then incorporating it into a phantom network prediction. This study finds that 1) increasing the number of polymer arms increases the modulus, 2) the phantom network allows reasonable modulus approximation for four‐arm and six‐arm gels, and 3) the modulus of eight‐arm gels exceeds the phantom network prediction. Since polymer cores act as chemical cross‐links and metal‐coordinated cross‐links form network strands, it is possible that increasing the number of metal‐coordinated linkages per molecule reinforces the chemical cross‐link at the polymer core.more » « less
-
Abstract The integration of mechanically interlocked molecules (MIMs) into polymeric materials has led to the development of mechanically interlocked polymers (MIPs). One class of MIPs that have gained attention in recent years are slide‐ring gels (SRGs), which are generally accessed by crosslinking rings on a main‐chain polyrotaxane. The mobility of the interlocked crosslinking moieties along the polymer backbone imparts enhanced properties onto these networks. An alternative synthetic approach to SRGs is to use a doubly threaded ring as the crosslinking moiety, yielding doubly threaded slide‐ring gel networks (dt‐SRGs). In this study, a photo‐curable ligand‐containing thread was used to assemble a series of metal‐templated pseudo[3]rotaxane crosslinkers that allow access to polymer networks that contain doubly threaded interlocked rings. The physicochemical and mechanical properties of these dt‐SRGs with varying size of the ring crosslinking moieties were investigated and compared to an entangled gel (EG) prepared by polymerizing the metal complex of the photo‐curable ligand‐containing thread, and a corresponding covalent gel (CG). Relative to the EG and CG, the dt‐SRGs exhibit enhanced swelling behavior, viscoelastic properties, and stress relaxation characteristics. In addition, the macroscopic properties of dt‐SRGs could be altered by “locking” ring mobility in the structure through remetalation, highlighting the impact of the mobility of the crosslinks.more » « less
An official website of the United States government
