skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1833200

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Mississippi River is the largest commercial waterway in North America and one of the most heavily engineered rivers in the world. Future alteration of the river’s hydrology by climate change may increase the vulnerability of flood mitigation and navigation infrastructure implemented to constrain 20thcentury discharge conditions. Here, we evaluate changes in Lower Mississippi River basin hydroclimate and discharge from 1920–2100 C.E. by integrating river gauge observations and climate model ensemble simulations from CESM1.2 under multiple greenhouse gas emissions scenarios. We show that the Lower Mississippi River’s flood regime is highly sensitive to emissions scenario; specifically, the return period of flood discharge exceeding existing flood mitigation infrastructure decreases from approximately 1000 years to 31 years by the year 2100 under RCP8.5 forcing, primarily driven by increasing precipitation and runoff within the basin. Without aggressive reductions in greenhouse gas emissions, flood mitigation infrastructure may require substantial retrofitting to avoid disruptions to industries and communities along the Lower Mississippi River. 
    more » « less