skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining the impact of emissions scenario on lower Mississippi River flood hazard projections
Abstract The Mississippi River is the largest commercial waterway in North America and one of the most heavily engineered rivers in the world. Future alteration of the river’s hydrology by climate change may increase the vulnerability of flood mitigation and navigation infrastructure implemented to constrain 20thcentury discharge conditions. Here, we evaluate changes in Lower Mississippi River basin hydroclimate and discharge from 1920–2100 C.E. by integrating river gauge observations and climate model ensemble simulations from CESM1.2 under multiple greenhouse gas emissions scenarios. We show that the Lower Mississippi River’s flood regime is highly sensitive to emissions scenario; specifically, the return period of flood discharge exceeding existing flood mitigation infrastructure decreases from approximately 1000 years to 31 years by the year 2100 under RCP8.5 forcing, primarily driven by increasing precipitation and runoff within the basin. Without aggressive reductions in greenhouse gas emissions, flood mitigation infrastructure may require substantial retrofitting to avoid disruptions to industries and communities along the Lower Mississippi River.  more » « less
Award ID(s):
1833200 2204852 2147781
PAR ID:
10371572
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Communications
Volume:
4
Issue:
9
ISSN:
2515-7620
Format(s):
Medium: X Size: Article No. 091001
Size(s):
Article No. 091001
Sponsoring Org:
National Science Foundation
More Like this
  1. Kaplan, J (Ed.)
    The Mississippi River Basin (MRB), the fourth-largest river basin in the world, is an important corridor for hy- droelectric power generation, agricultural and industrial production, riverine transportation, and ecosystem goods and services. Historically, flooding of the Mississippi River has resulted in significant economic losses. In a future with an intensified global hydrological cycle, the altered discharge of the river may jeopardize commu- nities and infrastructure situated in the floodplain. This study utilizes output from the Community Earth System Model version 2 (CESM2) large ensemble simulations spanning 1930 to 2100 to quantify changes in future MRB discharge under a high greenhouse gas emissions scenario (SSP3–7.0). The simulations show that increasing precipitation trends exceed and dominate increased evapotranspiration (ET), driving an overall increase in total discharge in the Ohio and Lower Mississippi River basins. On a seasonal scale, reduced spring snowmelt is projected in the Ohio and Missouri River basins, leading to reduced spring runoff in those regions. However, decreased snowmelt and spring runoff is overshadowed by a larger increase in projected precipitation minus ET over the entire basin and leads to an increase in mean river discharge. This increase in discharge is linked to a relatively small increase in the magnitude of extreme floods (2 % and 3 % for 100-year and 1000-year floods, respectively) by the late 21st century relative to the late 20th century. Our analyses imply that under SSP3–7.0 forcing, the Mississippi River and Tributaries (MR&T) project design flood would not be exceeded at the 100-year return period. Our results harbor implications for water resources management including increased vulnerability of the Mississippi River given projected changes in climate. 
    more » « less
  2. Abstract The Mississippi River is a vital economic corridor used for generating hydroelectric power, transporting agricultural products, and municipal and industrial water use. Communities, industries, and infrastructure along the Mississippi River face an uncertain future as it grows more susceptible to climate extremes. A key challenge is determining whether Mississippi river discharge will increase or decrease during the 21st century. Because the 20th century record is limited in time, paleoclimate data and model simulations provide enhanced understanding of the basin's hydroclimate response to external forcing. Here, we investigate how anthropogenic forcing in the 20th century shifts the statistics of river discharge compared to a Last Millennium (LM) baseline using simulations from the Community Earth System Model Last Millennium Ensemble. We present evidence that the 20th century exhibits wetter conditions (i.e., increased river discharge) over the basin compared to the pre‐industrial, and that land use/land cover changes have a significant control on the hydroclimatic response. Conversely, while precipitation is projected to increase in the 21st century, the basin is generally drier (i.e., decreased river discharge) compared to the 20th century. Overall, we find that changes in greenhouse gases contribute to a lower risk of extreme discharge and flooding in the basin during the 20th century, while land use changes contribute to increased risk of flooding. The additional climate information afforded by the LM simulations offers an improved understanding of what drove extreme flooding events in the past, which can help inform the development of future regional flood mitigation strategies. 
    more » « less
  3. Abstract Changes in climate are expected to influence discharge of the lower Mississippi River, but projections disagree on whether discharge will increase or decrease over the coming century. Using a reconstructed median peak annual flow for the past 1,500 years based on geomorphic scaling laws, we show that discharge on the lower Mississippi River decreased during the Medieval era (c. 1000–1200 CE)—a period of regionally warm and dry conditions that serves as a partial analog for projected warming. These changes in discharge inferred from channel morphology track discharge simulated in the Community Earth System Model Last Millennium Ensemble. Simulations show that decreased Medieval era discharge is driven primarily by regionally enhanced evapotranspiration. Our findings are consistent with 21st century projections of decreased discharge on the lower Mississippi River under moderate greenhouse forcing scenarios, and demonstrate consistency between reconstructed and simulated discharge over the last millennium. 
    more » « less
  4. Abstract BackgroundTwo major factors that determine the efficiency of programs designed to mitigate greenhouse gases by encouraging voluntary changes in U.S. agricultural land management are the effect of land use changes on producers’ profitability and the net sequestration those changes create. In this work, we investigate how the interaction of these factors produces spatial heterogeneity in the cost-efficiency of voluntary programs incentivizing tillage reduction and cover-cropping practices. We map county-level predicted rates of adoption for each practice with the greenhouse gas mitigation or carbon sequestration benefits expected from their use. Then, we use these bivariate maps to describe how the cost efficiency of agricultural mitigation efforts is likely to vary spatially in the United States. ResultsOur results suggest the combination of high adoption rates and large reductions in net emissions make reduced tillage programs most cost efficient in the Chesapeake Bay watershed or the Upper Mississippi and Lower Missouri sub-basins of the Mississippi River. For programs aiming to reduce net emissions by incentivizing cover-cropping, we expect cost-efficiency to be greatest in the areas near the main stem of the Mississippi River within its Middle and Lower sections. ConclusionsMany voluntary agricultural conservation programs offer the same incentives across the United States. Yet spatial variation in profitability and efficacy of conservation practices suggest that these uniform approaches are not cost-effective. Spatial targeting of voluntary agricultural conservation programs has the potential to increase the cost-efficiency of these programs due to regional heterogeneity in the profitability and greenhouse gas mitigation benefits of agricultural land management practices across the continental United States. We illustrate how predicted rates of adoption and greenhouse gas sequestration might be used to target regions where efforts to incentivize cover-cropping and reductions in tillage are most likely to be cost -effective. 
    more » « less
  5. Abstract Agricultural runoff from the Mississippi‐Atchafalaya River Basin delivers nitrogen (N) and phosphorus (P) to the Gulf of Mexico, causing hypoxia, and climate drives interannual variation in nutrient loads. Climate phenomena such as El Niño–Southern Oscillation may influence nutrient export through effects on river flow, nutrient uptake, or biogeochemical transformation, but landscape variation at smaller spatial scales can mask climate signals in load or discharge time series within large river networks. We used multivariate autoregressive state‐space modeling to investigate climate signals in the long‐term record (1979–2014) of discharge, N, P, and SiO2loads at three nested spatial scales within the Mississippi‐Atchafalaya River Basin. We detected significant signals of El Niño–Southern Oscillation and land‐surface temperature anomalies in N loads but not discharge, SiO2, or P, suggesting that large‐scale climate phenomena contribute to interannual variation in nutrient loads through biogeochemical mechanisms beyond simple discharge‐load relationships. 
    more » « less