skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1833358

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundThe central thesis of plant ecology is that climate determines the global distribution of vegetation. Within a vegetation type, however, finer‐scale environmental features, such as the physical and chemical properties of soil (edaphic variation), control patterns of plant diversity and distributions. AimsHere, we review the literature to provide a mechanistic framework for the edaphic control of plant diversity. First, we review three examples where soils have known, prevalent effects on plant diversity: during soil formation, on unusual soils and in regions with high edaphic heterogeneity. Second, we synthesize how edaphic factors mediate the relative importance of the four key processes of community assembly (speciation, ecological drift, dispersal and niche selection). Third, we review the potential effects of climate change in edaphically heterogeneous regions. Finally, we outline key knowledge gaps for understanding the edaphic control of plant diversity. In our review, we emphasize floras of unusual edaphic areas (i.e., serpentine, limestone, granite), because these areas contribute disproportionately to the biodiversity hotspots of the world. TaxaTerrestrial plants. LocationGlobal. ConclusionEdaphic variation is a key driver of biodiversity patterns and influences the relative importance of speciation, dispersal, ecological drift, niche selection and interactions among these processes. Research is still needed to gain a better understanding of the underlying mechanisms by which edaphic variation influences these community assembly processes, and unusual soils provide excellent natural systems for such tests. Furthermore, the incorporation of edaphic variation into climate change research will help to increase the predictive power of species distribution models, identify potential climate refugia and identify species with adaptations that buffer them from climate change. 
    more » « less
  2. PremiseClouds have profound consequences for ecosystem structure and function. Yet, the direct monitoring of clouds and their effects on biota is challenging especially in remote and topographically complex tropical cloud forests. We argue that known relationships between climate and the taxonomic and functional composition of plant communities may provide a fingerprint of cloud base height, thus providing a rapid and cost‐effective assessment in remote tropical cloud forests. MethodsTo detect cloud base height, we compared species turnover and functional trait values among herbaceous and woody plant communities in an ecosystem dominated by cloud formation. We measured soil and air temperature, soil nutrient concentrations, and extracellular enzyme activity. We hypothesized that woody and herbaceous plants would provide signatures of cloud base height, as evidenced by abrupt shifts in both taxonomic composition and plant function. ResultsWe demonstrated abrupt changes in taxonomic composition and the community‐ weighted mean of a key functional trait, specific leaf area, across elevation for both woody and herbaceous species, consistent with our predictions. However, abrupt taxonomic and functional changes occurred 100 m higher in elevation for herbaceous plants compared to woody ones. Soil temperature abruptly decreased where herbaceous taxonomic and functional turnover was high. Other environmental variables including soil biogeochemistry did not explain the abrupt change observed for woody plant communities. ConclusionsWe provide evidence that a trait‐based approach can be used to estimate cloud base height. We outline how rises in cloud base height and differential environmental requirements between growth forms can be distinguished using this approach. 
    more » « less
  3. Abstract Environmental gradients have played a pivotal role in the history and development of plant ecology and are useful for testing ecological and evolutionary theory. Área de Conservación Guanacaste is a spatio‐temporal mosaic of forests that have evolved continuously across elevation, topography, soil types, succession, and annual and inter‐annual climatic change. Studies of plant ecology across diverse gradients ofACGhave shaped functional ecology, successional theory, community assembly, plant–herbivore interactions, among many other fields. In this review, we synthesize the, perhaps overlooked, role plant ecological studies ofACGhave had on our understanding of tropical forest dynamics. We outline present‐day processes that will have major impacts on forest dynamics ofACGin the future and highlight howACGwill continue to shape future research priorities in plant ecology. Abstract in Spanish is available with online material. 
    more » « less