skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tropical forest composition and function across space and time: Insights from diverse gradients in Área de Conservación Guanacaste
Abstract Environmental gradients have played a pivotal role in the history and development of plant ecology and are useful for testing ecological and evolutionary theory. Área de Conservación Guanacaste is a spatio‐temporal mosaic of forests that have evolved continuously across elevation, topography, soil types, succession, and annual and inter‐annual climatic change. Studies of plant ecology across diverse gradients ofACGhave shaped functional ecology, successional theory, community assembly, plant–herbivore interactions, among many other fields. In this review, we synthesize the, perhaps overlooked, role plant ecological studies ofACGhave had on our understanding of tropical forest dynamics. We outline present‐day processes that will have major impacts on forest dynamics ofACGin the future and highlight howACGwill continue to shape future research priorities in plant ecology. Abstract in Spanish is available with online material.  more » « less
Award ID(s):
1833358
PAR ID:
10452814
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Biotropica
Volume:
52
Issue:
6
ISSN:
0006-3606
Page Range / eLocation ID:
p. 1065-1075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimsBryophytes can cover three quarters of the ground surface, play key ecological functions, and increase biodiversity in mesic high‐elevation conifer forests of the temperate zone. Forest gaps affect species coexistence (and ecosystem functions) as suggested by the gap and gap‐size partitioning hypotheses (GPH,GSPH). Here we test these hypotheses in the context of high‐elevation forest bryophyte communities and their functional attributes. Study SiteSpruce–fir forests on Whiteface Mountain, NY,USA. MethodsWe characterized canopy openness, microclimate, forest floor substrates, vascular vegetation cover, and moss layer (cover, common species, and functional attributes) in three canopy openness environments (gap, gap edge, forest canopy) across 20 gaps (fir waves) (n = 60); the functional attributes were based on 16 morphologic, reproductive, and ecological bryophyte plant functional traits (PFTs). We testedGPHandGSPHrelative to bryophyte community metrics (cover, composition), traits, and trait functional sensitivity (functional dispersion;FDis) using indicator species analysis, ordination, and regression. ResultsCanopy openness drove gradients in ground‐level temperature, substrate abundance and heterogeneity (beta diversity), and understory vascular vegetation cover. TheGPHwas consistent with (a) the abundance patterns of forest canopy indicator species (Dicranum fuscescens,Hypnum imponens, andTetraphis pellucida), and (b)FDisbased on threePFTs (growth form, fertility, and acidity), both increasing with canopy cover. We did not find support forGPHin the remaining species or traits, or forGSPHin general; gap width (12–44 m) was not related to environmental or bryophyte community gradients. ConclusionsThe observed lack of variation in most bryophyte metrics across canopy environments suggests high resistance of the bryophyte layer to natural canopy gaps in high‐elevation forests. However, responses of forest canopy indicator species suggest that canopy mortality, potentially increased by changing climate or insect pests, may cause declines in some forest canopy species and consequently in the functional diversity of bryophyte communities. 
    more » « less
  2. Abstract The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait–trait covariation. We found that most variation inLEStraits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species.LEStraits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation inLEStraits cannot always be interpreted as differences in resource use strategy. 
    more » « less
  3. Premise of the StudyWe investigated the spatial and temporal patterns of vegetation phenology with phenometrics derived from PhenoCam imagery. Specifically, we evaluated the Bioclimatic Law proposed by Hopkins, which relates phenological transitions to latitude, longitude, and elevation. Methods“Green‐up” and “green‐down” dates—representing the start and end of the annual cycles of vegetation activity—were estimated from measures of canopy greenness calculated from digital repeat photography. We used data from 65 deciduous broadleaf (DB) forest sites, 18 evergreen needleleaf (EN) forest sites, and 21 grassland (GR) sites. ResultsDBgreen‐up dates were well correlated with mean annual temperature and varied along spatial gradients consistent with the Bioclimatic Law. Interannual variation inDBphenology was most strongly associated with temperature anomalies during a relatively narrow window of time.ENphenology was not well correlated with either climatic factors or spatial gradients, but similar toDBphenology, interannual variation was most closely associated with temperature anomalies. ForGRsites, mean annual precipitation explained most of the spatial variation in the duration of vegetation activity, whereas both temperature and precipitation anomalies explained interannual variation in phenology. DiscussionPhenoCam data provide an objective and consistent means by which spatial and temporal patterns in vegetation phenology can be investigated. 
    more » « less
  4. Abstract Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9‐years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing seasonFCH4,GPPandNEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing seasonGPPin subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence onER, but dominant contribution toERswitched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter‐annual lag effects onERin this rich fen, as has been observed in several nutrient‐poor peatlands. WhileERwas dependent on soil temperatures at 2 cm depth,FCH4was linked to soil temperatures at 25 cm. Inter‐annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higherFCH4in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short‐term fluctuations in wetness caused significant lag effects onFCH4, but droughts caused no inter‐annual lag effects onFCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens. 
    more » « less
  5. Abstract Intensifying climate change and an increasing need for understanding its impacts on ecological communities places new emphasis on testing environmental stress models (ESMs). Using a prior literature search plus references from a more recent search, I evaluated empirical support forESMs, focusing on whether consumer pressure on prey decreased (consumer stress model;CSM) or increased (prey stress model;PSM) with increasing environmental stress. Applying the criterion that testingESMsrequires conducting research at multiple sites along environmental stress gradients, the analysis found thatCSMswere most frequent, with ‘No Effect’ andPSMsoccurring at low but similar frequencies. This result contrasts to a prior survey in which ‘No Effect’ studies were most frequent, thus suggesting that consumers are generally more suppressed by stress than prey. Thus, increased climate change‐induced environmental stress seems likely to reduce, not increase impacts of consumers on prey more often than the reverse 
    more » « less