Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Plant–soil feedback (PSF) plays a central role in determining plant community dynamics, yet our understanding of how different combinations of plants and microbes influence PSF remains limited. Plants of different mycorrhizal types often exhibit contrasting PSF outcomes, influencing plant recruitment and spatial structure. Generalizing across plant species based on mycorrhizal type creates the potential to examine broader effects on ecological communities.We review mechanisms contributing to different PSF outcomes between arbuscular mycorrhizal and ectomycorrhizal trees. We focus on how plant and fungal traits that differ between mycorrhizal types interact with pathogenic and saprotrophic microorganisms and nutrient and carbon cycling.Synthesis.Building on this framework, we propose several new research directions. First, mycorrhizal‐induced changes in soils can operate beyond the conspecific level, spilling over from abundant plant species onto less abundant ones. This community‐level ‘mycorrhizal spillover’ is hypothesized to affect PSF in ways that are additive and interactive with conspecific density dependence. Second, we describe how mycorrhizal effects on PSF could structure the way plant communities respond to global change. Third, we discuss how they may influence plant evolution by altering the balance of selection pressures on traits and genes related to pathogen defence and mutualism formation.more » « less
-
Abstract Restoration techniques using passive management rely on natural plant community succession after reclamation to return disturbed areas to native ecosystems. This approach is often used in areas affected by mining activity, but effectiveness is variable and depends on the ability of native plants to establish in highly degraded soil and outcompete invasive species. We evaluated the restoration progress of three former surface mines where activity had exposed alkaline glacial till parent material. The mines underwent reclamation (grading, soil compaction, and planting fast‐growing herbaceous species) followed by passive management for 7, 28, and 35 years. At the time of initial restoration planning in the 1980s, native woody species were expected to recolonize the site within 10–20 years. Treating the sites as a chronosequence, we observed that woody vegetation increased inconsistently over this 35‐year timespan. Most of the woody plants present today are invasive species (Elaeagnus umbellataandRhamnus frangula) that are counterproductive to reestablishment of native forest. However, results were not entirely negative, with increased overall native species and decreased exotic species in the older sites, and plant community composition changing somewhat consistently over time. This suggests that succession has been slowed rather than completely arrested, and native herbaceous plants are establishing. The progression of restoration appears to be far slower than expectations during initial planning. Furthermore, native woody plants struggle to establish, whereas invasive woody plants are thriving, raising doubts that passively managed succession can lead to the desired outcome of a native species forest in this significantly degraded habitat.more » « less
-
Druzhinina, Irina S. (Ed.)ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations.more » « less
An official website of the United States government
