skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Setting the stage for plant–soil feedback: Mycorrhizal influences over conspecific recruitment, plant and fungal communities, and coevolution
Abstract Plant–soil feedback (PSF) plays a central role in determining plant community dynamics, yet our understanding of how different combinations of plants and microbes influence PSF remains limited. Plants of different mycorrhizal types often exhibit contrasting PSF outcomes, influencing plant recruitment and spatial structure. Generalizing across plant species based on mycorrhizal type creates the potential to examine broader effects on ecological communities.We review mechanisms contributing to different PSF outcomes between arbuscular mycorrhizal and ectomycorrhizal trees. We focus on how plant and fungal traits that differ between mycorrhizal types interact with pathogenic and saprotrophic microorganisms and nutrient and carbon cycling.Synthesis.Building on this framework, we propose several new research directions. First, mycorrhizal‐induced changes in soils can operate beyond the conspecific level, spilling over from abundant plant species onto less abundant ones. This community‐level ‘mycorrhizal spillover’ is hypothesized to affect PSF in ways that are additive and interactive with conspecific density dependence. Second, we describe how mycorrhizal effects on PSF could structure the way plant communities respond to global change. Third, we discuss how they may influence plant evolution by altering the balance of selection pressures on traits and genes related to pathogen defence and mutualism formation.  more » « less
Award ID(s):
1834241
PAR ID:
10609257
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
113
Issue:
6
ISSN:
0022-0477
Format(s):
Medium: X Size: p. 1327-1344
Size(s):
p. 1327-1344
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plant–soil feedbacks (PSFs) drive plant community diversity via interactions between plants and soil microbes. However, we know little about how frequently PSFs affect plants at the seed stage, and the compositional shifts in fungi that accompany PSFs on germination.We conducted a pairwise PSF experiment to test whether seed germination was differentially impacted by conspecific versus heterospecific soils for seven grassland species. We used metagenomics to characterize shifts in fungal community composition in soils conditioned by each plant species. To investigate whether changes in the abundance of certain fungal taxa were associated with multiple PSFs, we assigned taxonomy to soil fungi and identified putative pathogens that were significantly more abundant in soils conditioned by plant species that experienced negative or positive PSFs.We observed negative, positive, and neutral PSFs on seed germination. Although conspecific and heterospecific soils for pairs with significant PSFs contained host‐specialized soil fungal communities, soils with specialized microbial communities did not always lead to PSFs. The identity of host‐specialized pathogens, that is, taxa uniquely present or significantly more abundant in soils conditioned by plant species experiencing negative PSFs, overlapped among plant species, while putative pathogens within a single host plant species differed depending on the identity of the heterospecific plant partner. Finally, the magnitude of feedback on germination was not related to the degree of fungal community differentiation between species pairs involved in negative PSFs.Synthesis. Our findings reveal the potential importance of PSFs at the seed stage. Although plant species developed specialized fungal communities in rhizosphere soil, pathogens were not strictly host‐specific and varied not just between plant species, but according to the identity of plant partner. These results illustrate the complexity of microbe‐mediated interactions between plants at different life stages that next‐generation sequencing can begin to unravel. 
    more » « less
  2. Abstract The ecological dynamics of co‐flowering communities are largely mediated by pollinators. However, current understanding of pollinator‐mediated interactions primarily relies on how co‐flowering plants influence attraction of shared pollinators, and much less is known about plant–plant interactions that occur via heterospecific pollen (HP) transfer. Invaded communities in particular can be highly affected by the transfer of alien pollen, but the strength, drivers and fitness consequences of these interactions at a community scale are not well understood.Here we analyse HP transfer networks in nine coastal communities in the Yucatan Mexico that vary in the relative abundance of invasive flowers to evaluate how HP donation and receipt varies between native and alien plants. We further evaluate whether HP donation and receipt are mediated by floral traits (e.g. display, flower size) or pollinator visitation rate. Finally, we evaluated whether post‐pollination success (proportion of pollen tubes produced) was affected by alien HP receipt and whether the effect varied between native and alien recipients.HP transfer networks exhibit relatively high connectance (c. 15%), suggesting high HP transfer within the studied communities. Significant network nestedness further suggests the existence of species that predominantly act as HP donors or recipients in the community. Species‐level analyses showed that natives receive 80% more HP compared to alien species, and that alien plants donate 40% more HP than natives. HP receipt and donation were mediated by different floral traits and such effects were independent of plant origin (native or alien). The proportion of alien HP received significantly affected conspecific pollen tube success in natives, but not that of alien species.Synthesis. Our results suggest that HP transfer in invaded communities is widespread, and that native and alien species play different roles within HP transfer networks, which are mediated by a different suite of floral traits. Alien species, in particular, play a central role as HP donors and are more tolerant to HP receipt than natives—a finding that points to two overlooked mechanisms facilitating alien plant invasion and success within native co‐flowering communities. 
    more » « less
  3. Abstract The plant microbiome is critical to plant health and is degraded with anthropogenic disturbance. However, the value of re‐establishing the native microbiome is rarely considered in ecological restoration. Arbuscular mycorrhizal (AM) fungi are particularly important microbiome components, as they associate with most plants, and later successional grassland plants are strongly responsive to native AM fungi.With five separate sites across the United States, we inoculated mid‐ and late successional plant seedlings with one of three types of native microbiome amendments: (a) whole rhizosphere soil collected from local old‐growth, undisturbed grassland communities in Illinois, Kansas or Oklahoma, (b) laboratory cultured AM fungi from these same old‐growth grassland sites or (c) no microbiome amendment. We also seeded each restoration with a diverse native seed mixture. Plant establishment and growth was followed for three growing seasons.The reintroduction of soil microbiome from native ecosystems improved restoration establishment.Including only native arbuscular mycorrhizal fungal communities produced similar improvements in plant establishment as what was found with whole soil microbiome amendment. These findings were robust across plant functional groups.Inoculated plants (amended with either AM fungi or whole soil) also grew more leaves and were generally taller during the three growing seasons.Synthesis and applications. Our research shows that mycorrhizal fungi can accelerate plant succession and that the reintroduction of both whole soil and laboratory cultivated native mycorrhizal fungi can be used as tools to improve native plant restoration following anthropogenic disturbance. 
    more » « less
  4. Abstract Nutrient enrichment impacts ecosystems globally. Population history, especially past resource environments, of numerically dominant plant species may affect their responses to subsequent changes in nutrient availability. Eutrophication can also alter plant–microbe interactions via direct effects on associated microbial communities or indirect effects on dominant species’ biomass production/allocation as a result of modified plant–soil interactions.We combined a greenhouse common garden and a field reciprocal transplant of a salt marsh foundation species (Spartina alterniflora) within a long‐term, whole‐ecosystem, nutrient‐enrichment study to determine whether enrichment affects plant production and microbial community structure differently depending on plant population history. For the greenhouse portion, we collected 20S. alternifloragenotypes—10 from an enriched creek that had received elevated nutrient inputs for 10 years and 10 from an unenriched reference creek—and reared them in a common garden for 1 year. For the field portion, we conducted a 2‐year, fully crossed reciprocal transplant experiment with two gardens each at the enriched and unenriched sites; we examined the effects of source site (i.e. population history), garden site and plant genotype.After 2 years, plants in enriched gardens had higher above‐ground biomass and altered below‐ground allocation compared to plants in unenriched gardens. However, performance also depended on plant population history: plants from the enriched site had decreased above‐ground and rhizome production compared to plants from the unenriched site, most notably in unenriched gardens. In addition, almost all above‐ and below‐ground traits varied depending on plant genotypic identity.Effects of nutrient enrichment on the associated microbial community were also pronounced. Following 1 year in common garden, microbial community structure varied by plant population history andS. alternifloragenotypic identity. However, at the end of the reciprocal transplant, microbial communities differed primarily between enriched and unenriched gardens.Synthesis. Nutrient enrichment can impact plant foundation species and associated soil microbes in the short term. Most importantly, nutrient enrichment can also have long‐lasting effects on plant populations and associated microbial communities that potentially compromise their ability to respond to changing resource conditions in the future. 
    more » « less
  5. Abstract Plant‐microbial‐herbivore interactions play a crucial role in the structuring and maintenance of plant communities and biodiversity, yet these relationships are complex. In grassland ecosystems, herbivores have the potential to greatly influence the survival, growth and reproduction of plants. However, few studies examine interactions of above‐ and below‐ground grazing and arbuscular mycorrhizal (AM) mycorrhizal symbiosis on plant community structure.We established experimental mesocosms containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil, maintained under mycorrhizal and nonmycorrhizal conditions, with and without native herbivorous soil nematodes, and with and without grasshopper herbivory. Using factorial analysis of variance and principal component analysis, we examined: (a) the independent and interacting effects of above‐ and below‐ground herbivores on AM symbiosis in tallgrass prairie mesocosms, (b) independent and interacting effects of above‐ and below‐ground herbivores and mycorrhizal fungi on plant community structure and (c) potential influences of mycorrhizal responsiveness of host plants on herbivory tolerance and concomitant shifts in plant community composition.Treatment effects were characterized by interactions between AM fungi and both above‐ground and below‐ground herbivores, while herbivore effects were additive. The dominance of mycorrhizal‐dependent C4grasses in the presence of AM symbiosis was increased (p < 0.0001) by grasshopper herbivory but reduced (p < 0.0001) by nematode herbivory. Cool‐season C3grasses exhibited a competitive release in the absence of AM symbiosis but this effect was largely reversed in the presence of grasshopper herbivory. Forbs showed species‐specific responses to both AM fungal inoculation and the addition of herbivores. Biomass of the grazing‐avoidant, facultatively mycotrophic forbBrickellia eupatorioidesincreased (p < 0.0001) in the absence of AM symbiosis and with grasshopper herbivory, while AM‐related increases in the above‐ground biomass of mycorrhizal‐dependent forbsRudbeckia hirtaandSalvia azureawere eradicated (p < 0.0001) by grasshopper herbivory. In contrast, nematode herbivory enhanced (p = 0.001) the contribution ofSalvia azureato total biomass.Synthesis. Our research indicates that arbuscular mycorrhizal symbiosis is the key driver of dominance of C4grasses in the tallgrass prairie, with foliar and root herbivory being two mechanisms for maintenance of plant diversity. 
    more » « less