skip to main content

Title: Extended q ‐Range X‐Ray Scattering Reveals High‐Resolution Structural Details of Biomacromolecules in Aqueous Solutions

We communicate a feasibility study for high‐resolution structural characterization of biomacromolecules in aqueous solution from X‐ray scattering experiments measured over a range of scattering vectors (q) that is approximately two orders of magnitude wider than used previously for such systems. Scattering data with such an extendedq‐range enables the recovery of the underlying real‐space atomic pair distribution function, which facilitates structure determination. We demonstrate the potential of this method for biomacromolecules using several types of cyclodextrins (CD) as model systems. We successfully identified deviations of the tilting angles for the glycosidic units in CDs in aqueous solutions relative to their values in the crystalline forms of these molecules. Such level of structural detail is inaccessible from standard small angle scattering measurements. Our results call for further exploration of ultra‐wide‐angle X‐ray scattering measurements for biomacromolecules.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
John Wiley & Sons, Ltd
Date Published:
Journal Name:
Chemistry – A European Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this paper, the composition, structure, morphology and kinetics of evolution during isothermal oxidation of Fe48Cr15Mo14Y2C15B6metallic glass powder in the supercooled region are investigated by an integratedex-situandin-situcharacterization and modelling approach. Raman and X-ray diffraction spectra established that oxidation yielded a hierarchical structure across decreasing length scales. At larger scale, Fe2O3grows as a uniform shell over the powder core. This shell, at smaller scale, consists of multiple grains. Ultra-small angle X-ray scattering intensity acquired during isothermal oxidation of the powder over a wide Q-range delineated direct quantification of oxidation behavior. The hierarchical structure was employed to construct a scattering model that was fitted to the measured intensity distributions to estimate the thickness of the oxide shell. The relative gain in mass during oxidation, computed theoretically from this model, relatively underestimated that measured in practice by a thermogravimetric analyzer due to the distribution in sizes of the particles. Overall, this paper presents the first direct quantification of oxidation in metallic glass powder by ultra-small angle X-ray scattering. It establishes novel experimental environments that can potentially unfold new paradigms of research into a wide spectrum of interfacial reactions in powder materials at elevated temperatures.

    more » « less
  2. Abstract

    Understanding the thermal stability of metallic glasses is critical to determining their safe temperatures of service. In this paper, the crystallization mechanism in spark plasma sintered Fe48Cr15Mo14Y2C15B6metallic glass is established by analyzing the crystal size distribution using x-ray diffraction, transmission electron microscopy andin-situsmall angle neutron scattering. Isothermal annealing at 700 °C and 725 °C for 100 min resulted in the formation of (Fe,Cr)23C6crystals, measured from transmission electron micrographs, to be from 10 to 30 nm. The small angle neutron scattering intensity measuredin-situ, over a Q-range of 0.02 to 0.3 Å−1, during isothermal annealing of the sintered samples, confirmed the presence of (Fe,Cr)23C6crystals. The measured scattering intensity, fitted by the maximum entropy model, over the Q-range of 0.02 to 0.06 Å−1, revealed that the crystals had radii ranging from 3 to 18 nm. The total volume fraction of crystals were estimated to be 0.13 and 0.22 upon isothermal annealing at 700 °C and 725 °C for 100 min respectively. The mechanism of crystallization in this spark plasma sintered iron based metallic glass was established to be from pre-existing nuclei as confirmed by Avrami exponents of 0.25 ± 0.01 and 0.39 ± 0.01 at the aforesaid temperatures.

    more » « less
  3. Abstract

    We report the structural and mechanical behavior of multicomponent hydrogels comprising the commercial poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymer F127 and alginate. Previous studies on this system have shown thermoreversible behavior in shear rheology. Here we explore the properties of these materials under compression and large deformations, relevant to applications such as wound dressings that require mechanical robustness. For gels with lower F127 concentration, we find that the stiffness of the gels can be ascribed to the alginate network, and that the Young's modulus and fracture stress do not strongly depend on temperatures. However, for gels with an F127 concentration of 30 wt %, the Young's modulus is enhanced at higher temperatures. Under large deformations, the fracture stress and fracture strain of the materials can be independently varied using the alginate and F127 concentrations, respectively; without the trade‐off in these properties that is often observed in rigid polymer networks. Small‐angle X‐ray scattering shows a power‐law dependence scattering intensity onqarising from the alginate network and scattering peaks consistent with rearranging micelles. For gels with lower F127 concentrations, we find a disordered–body‐centered cubic (BCC)‐face‐centered cubic (FCC) progression of states with temperature, and a BCC/FCC mixture for gels with higher F127 concentrations.

    more » « less
  4. Abstract

    Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.

    more » « less
  5. Abstract

    Raman scattering is a powerful probe oflocal structure (LS)of glasses. In Sodium Phosphate Glasses (SPGs), we show that bothLScomposed of Qnspecies andExtended Range Structures (ERS)composed of Long Chains (LCs), Large Rings (LRs), and Small Rings (SRs) can be decoded by Raman scattering. The trimodal distribution of P‐Oterminalstretch modes of Q2species and P‐Obridgingatx < 50% are manifestations of theseERS. These two pairs of triads of modes are uniquely identified with Q2units present in either LCs, or LRs, or SRs. The existence three phases of c‐NaPO3composed of 3‐membered rings, 6‐membered rings, and infinitely long chains has facilitated the identification. The Intermediate Phase (IP) in SPGs extends in the 37.5 < x < 46.0% range, the Stressed‐rigid Phase in the 46.0% < x < 50%, and the Flexible Phase in the 18% < x < 37.5% range of soda. We show the IP consists predominantly of LCs (82%), with a minority of LRs (15%) and SRs (3%). The LR‐ and SR‐fractions increase measurably in the non‐IP phases. The structural finding is in harmony with the high configurational entropy of the IP glasses that leads aging to be qualitatively suppressed.

    more » « less