skip to main content


Search for: All records

Award ID contains: 1835307

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In human-computer interaction (HCI), there has been a push towards open science, but to date, this has not happened consistently for HCI research utilizing brain signals due to unclear guidelines to support reuse and reproduction. To understand existing practices in the field, this paper examines 110 publications, exploring domains, applications, modalities, mental states and processes, and more. This analysis reveals variance in how authors report experiments, which creates challenges to understand, reproduce, and build on that research. It then describes an overarching experiment model that provides a formal structure for reporting HCI research with brain signals, including definitions, terminology, categories, and examples for each aspect. Multiple distinct reporting styles were identified through factor analysis and tied to different types of research. The paper concludes with recommendations and discusses future challenges. This creates actionable items from the abstract model and empirical observations to make HCI research with brain signals more reproducible and reusable. 
    more » « less
  2. Technology advances and lower equipment costs are enabling non-invasive, convenient recording of brain data outside of clinical settings in more real-world environments, and by non-experts. Despite the growing interest in and availability of brain signal datasets, most analytical tools are made for experts in the specific device technology, and have rigid constraints on the type of analysis available. We developed BrainEx to support interactive exploration and discovery within brain signals datasets. BrainEx takes advantage of algorithms that enable fast exploration of complex, large collections of time series data, while being easy to use and learn. This system enables researchers to perform similarity search, explore feature data and natural clustering, and select sequences of interest for future searches and exploration, while also maintaining the usability of a visual tool. In addition to describing the distributed architecture and visual design for BrainEx, this paper reports on a benchmark experiment showing that it outperforms other existing systems for similarity search. Additionally, we report on a preliminary user study in which domain experts used the visual exploration interface and affirmed that it meets the requirements. Finally, it presents a case study using BrainEx to explore real-world, domain-relevant data. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Cognitive control and rule learning are two important mechanisms that explain how goals influence behavior and how knowledge is acquired. These mechanisms are studied heavily in cognitive science literature within highly controlled tasks to understand human cognition. Although they are closely linked to the student behaviors that are often studied within intelligent tutoring systems (ITS), their direct effects on learning have not been explored. Understanding these underlying cognitive mechanisms of beneficial and harmful student behaviors can provide deeper insight into detecting such behaviors and improve predictive models of student learning. In this paper, we present a thinkaloud study where we asked students to narrate their thought processes while solving probability problems in ASSISTments. Students are randomly assigned to one of two conditions that are designed to induce the two modes of cognitive control based on the Dual Mechanisms of Control framework. We also observe how the students go through the phases of rule learning as defined in a rule learning paradigm. We discuss the effects of these different mechanisms on learning, and how the information they provide can be used in student modeling. 
    more » « less
  7. Automatic detection of an individual’s mind-wandering state has implications for designing and evaluating engaging and effective learning interfaces. While it is difficult to differentiate whether an individual is mind-wandering or focusing on the task only based on externally observable behavior, brain-based sensing offers unique insights to internal states. To explore the feasibility, we conducted a study using functional near-infrared spectroscopy (fNIRS) and investigated machine learning classifiers to detect mind-wandering episodes based on fNIRS data, both on an individual level and a group level, specifically focusing on automated window selection to improve classification results. For individual-level classification, by using a moving window method combined with a linear discriminant classifier, we found the best windows for classification and achieved a mean F1-score of 74.8%. For group-level classification, we proposed an individual-based time window selection (ITWS) algorithm to incorporate individual differences in window selection. The algorithm first finds the best window for each individual by using embedded individual-level classifiers and then uses these windows from all participants to build the final classifier. The performance of the ITWS algorithm is evaluated when used with eXtreme gradient boosting, convolutional neural networks, and deep neural networks. Our results show that the proposed algorithm achieved significant improvement compared to the previous state of the art in terms of brain-based classification of mind-wandering, with an average F1-score of 73.2%. This builds a foundation for mind-wandering detection for both the evaluation of multimodal learning interfaces and for future attention-aware systems. 
    more » « less