Abstract Because of their limited spatial resolution, numerical weather prediction and climate models have to rely on parameterizations to represent atmospheric turbulence and convection. Historically, largely independent approaches have been used to represent boundary layer turbulence and convection, neglecting important interactions at the subgrid scale. Here we build on an eddy‐diffusivity mass‐flux (EDMF) scheme that represents all subgrid‐scale mixing in a unified manner, partitioning subgrid‐scale fluctuations into contributions from local diffusive mixing and coherent advective structures and allowing them to interact within a single framework. The EDMF scheme requires closures for the interaction between the turbulent environment and the plumes and for local mixing. A second‐order equation for turbulence kinetic energy (TKE) provides one ingredient for the diffusive local mixing closure, leaving a mixing length to be parameterized. Here, we propose a new mixing length formulation, based on constraints derived from the TKE balance. It expresses local mixing in terms of the same physical processes in all regimes of boundary layer flow. The formulation is tested at a range of resolutions and across a wide range of boundary layer regimes, including a stably stratified boundary layer, a stratocumulus‐topped marine boundary layer, and dry convection. Comparison with large eddy simulations (LES) shows that the EDMF scheme with this diffusive mixing parameterization accurately captures the structure of the boundary layer and clouds in all cases considered.
more »
« less
Online Learning of Entrainment Closures in a Hybrid Machine Learning Parameterization
Abstract This work integrates machine learning into an atmospheric parameterization to target uncertain mixing processes while maintaining interpretable, predictive, and well‐established physical equations. We adopt an eddy‐diffusivity mass‐flux (EDMF) parameterization for the unified modeling of various convective and turbulent regimes. To avoid drift and instability that plague offline‐trained machine learning parameterizations that are subsequently coupled with climate models, we frame learning as an inverse problem: Data‐driven models are embedded within the EDMF parameterization and trained online in a one‐dimensional vertical global climate model (GCM) column. Training is performed against output from large‐eddy simulations (LES) forced with GCM‐simulated large‐scale conditions in the Pacific. Rather than optimizing subgrid‐scale tendencies, our framework directly targets climate variables of interest, such as the vertical profiles of entropy and liquid water path. Specifically, we use ensemble Kalman inversion to simultaneously calibrate both the EDMF parameters and the parameters governing data‐driven lateral mixing rates. The calibrated parameterization outperforms existing EDMF schemes, particularly in tropical and subtropical locations of the present climate, and maintains high fidelity in simulating shallow cumulus and stratocumulus regimes under increased sea surface temperatures from AMIP4K experiments. The results showcase the advantage of physically constraining data‐driven models and directly targeting relevant variables through online learning to build robust and stable machine learning parameterizations.
more »
« less
- Award ID(s):
- 1835860
- PAR ID:
- 10576601
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 16
- Issue:
- 11
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Uncertainties in ocean-mixing parameterizations are primary sources for ocean and climate modeling biases. Due to lack of process understanding, traditional physics-driven parameterizations perform unsatisfactorily in the tropics. Recent advances in the deep-learning method and the new availability of long-term turbulence measurements provide an opportunity to explore data-driven approaches to parameterizing oceanic vertical-mixing processes. Here, we describe a novel parameterization based on an artificial neural network trained using a decadal-long time record of hydrographic and turbulence observations in the tropical Pacific. This data-driven parameterization achieves higher accuracy than current parameterizations, demonstrating good generalization ability under physical constraints. When integrated into an ocean model, our parameterization facilitates improved simulations in both ocean-only and coupled modeling. As a novel application of machine learning to the geophysical fluid, these results show the feasibility of using limited observations and well-understood physical constraints to construct a physics-informed deep-learning parameterization for improved climate simulations.more » « less
-
Abstract Turbulence parameterizations for convective boundary layer in coarse‐scale atmospheric models usually consider a combination of the eddy‐diffusive transport and a non‐local transport, typically in the form of a mass flux term, such as the widely adopted eddy‐diffusivity mass‐flux (EDMF) approach. These two types of turbulent transport are generally considered to be independent of each other. Using results from large‐eddy simulations, here, we show that a Taylor series expansion of the updraft and downdraft mass‐flux transport can be used to approximate the eddy‐diffusivity transport in the atmospheric surface layer and the lower part of the mixed layer, connecting both eddy‐diffusivity and mass‐flux transport theories in convective conditions, which also quantifies departure from the Monin‐Obukhov similarity (MOS) in the surface layer. This study provides a theoretical support for a unified EDMF parameterization applied to both the surface layer and mixed layer and highlights important correction required for surface models relying on MOS.more » « less
-
Training Physics‐Based Machine‐Learning Parameterizations With Gradient‐Free Ensemble Kalman MethodsAbstract Most machine learning applications in Earth system modeling currently rely on gradient‐based supervised learning. This imposes stringent constraints on the nature of the data used for training (typically, residual time tendencies are needed), and it complicates learning about the interactions between machine‐learned parameterizations and other components of an Earth system model. Approaching learning about process‐based parameterizations as an inverse problem resolves many of these issues, since it allows parameterizations to be trained with partial observations or statistics that directly relate to quantities of interest in long‐term climate projections. Here, we demonstrate the effectiveness of Kalman inversion methods in treating learning about parameterizations as an inverse problem. We consider two different algorithms: unscented and ensemble Kalman inversion. Both methods involve highly parallelizable forward model evaluations, converge exponentially fast, and do not require gradient computations. In addition, unscented Kalman inversion provides a measure of parameter uncertainty. We illustrate how training parameterizations can be posed as a regularized inverse problem and solved by ensemble Kalman methods through the calibration of an eddy‐diffusivity mass‐flux scheme for subgrid‐scale turbulence and convection, using data generated by large‐eddy simulations. We find the algorithms amenable to batching strategies, robust to noise and model failures, and efficient in the calibration of hybrid parameterizations that can include empirical closures and neural networks.more » « less
-
Abstract Developing urban land surface models for modeling cities at high resolutions needs to better account for the city‐specific multi‐scale land surface heterogeneities at a reasonable computational cost. We propose using an encoder‐decoder convolutional neural network to develop a computationally efficient model for predicting the mean velocity field directly from urban geometries. The network is trained using the geometry‐resolving large eddy simulation results. Systematic testing on urban structures with increasing deviations from the training geometries shows the prediction error plateaus at 15%, compared to errors sharply increasing up to 35% in the null models. This is explained by the trained model successfully capturing the effects of pressure drag, especially for tall buildings. The prediction error of the aerodynamic drag coefficient is reduced by 32% compared with the default parameterization implemented in mesoscale modeling. This study highlights the potential of combining computational fluid dynamics modeling and machine learning to develop city‐specific parameterizations.more » « less
An official website of the United States government
