skip to main content


Search for: All records

Award ID contains: 1835863

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We explore the potential of feed‐forward deep neural networks (DNNs) for emulating cloud superparameterization in realistic geography, using offline fits to data from the superparameterized community atmospheric model. To identify the network architecture of greatest skill, we formally optimize hyperparameters using ∼250 trials. Our DNN explains over 70% of the temporal variance at the 15‐min sampling scale throughout the mid‐to‐upper troposphere. Autocorrelation timescale analysis compared against DNN skill suggests the less good fit in the tropical, marine boundary layer is driven by neural network difficulty emulating fast, stochastic signals in convection. However, spectral analysis in the temporal domain indicates skillful emulation of signals on diurnal to synoptic scales. A closer look at the diurnal cycle reveals correct emulation of land‐sea contrasts and vertical structure in the heating and moistening fields, but some distortion of precipitation. Sensitivity tests targeting precipitation skill reveal complementary effects of adding positive constraints versus hyperparameter tuning, motivating the use of both in the future. A first attempt to force an offline land model with DNN emulated atmospheric fields produces reassuring results further supporting neural network emulation viability in real‐geography settings. Overall, the fit skill is competitive with recent attempts by sophisticated Residual and Convolutional Neural Network architectures trained on added information, including memory of past states. Our results confirm the parameterizability of superparameterized convection with continents through machine learning and we highlight the advantages of casting this problem locally in space and time for accurate emulation and hopefully quick implementation of hybrid climate models.

     
    more » « less
  2. Abstract

    Idealized convection‐permitting simulations of radiative‐convective equilibrium have become a popular tool for understanding the physical processes leading to horizontal variability of tropical water vapor and rainfall. However, the applicability of idealized simulations to nature is still unclear given that important processes are typically neglected, such as lateral water vapor advection by extratropical intrusions, or interactive ocean coupling. Here, we exploit spectral analysis to compactly summarize the multiscale processes supporting convective aggregation. By applying this framework to high‐resolution reanalysis data and satellite observations in addition to idealized simulations, we compare convective‐aggregation processes across horizontal scales and data sets. The results affirm the validity of the radiative‐convective equilibrium simulations as an analogy to the real world. Column moist static energy tendencies share similar signs and scale selectivity in convection‐permitting models and observations: Radiation increases variance at wavelengths above 1,000 km, while advection damps variance across wavelengths, and surface fluxes mostly reduce variance between 1,000 and 10,000 km.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract Neural networks are a promising technique for parameterizing subgrid-scale physics (e.g., moist atmospheric convection) in coarse-resolution climate models, but their lack of interpretability and reliability prevents widespread adoption. For instance, it is not fully understood why neural network parameterizations often cause dramatic instability when coupled to atmospheric fluid dynamics. This paper introduces tools for interpreting their behavior that are customized to the parameterization task. First, we assess the nonlinear sensitivity of a neural network to lower-tropospheric stability and the midtropospheric moisture, two widely studied controls of moist convection. Second, we couple the linearized response functions of these neural networks to simplified gravity wave dynamics, and analytically diagnose the corresponding phase speeds, growth rates, wavelengths, and spatial structures. To demonstrate their versatility, these techniques are tested on two sets of neural networks, one trained with a superparameterized version of the Community Atmosphere Model (SPCAM) and the second with a near-global cloud-resolving model (GCRM). Even though the SPCAM simulation has a warmer climate than the cloud-resolving model, both neural networks predict stronger heating/drying in moist and unstable environments, which is consistent with observations. Moreover, the spectral analysis can predict that instability occurs when GCMs are coupled to networks that support gravity waves that are unstable and have phase speeds larger than 5 m s −1 . In contrast, standing unstable modes do not cause catastrophic instability. Using these tools, differences between the SPCAM-trained versus GCRM-trained neural networks are analyzed, and strategies to incrementally improve both of their coupled online performance unveiled. 
    more » « less
  5. Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such as Keras. These software libraries come preloaded with a variety of network architectures, provide autodifferentiation, and support GPUs for fast and efficient computation. As a result, a deep learning practitioner will favor training a neural network model in Python, where these tools are readily available. However, many large-scale scientific computation projects are written in Fortran, making it difficult to integrate with modern deep learning methods. To alleviate this problem, we introduce a software library, the Fortran-Keras Bridge (FKB). This two-way bridge connects environments where deep learning resources are plentiful with those where they are scarce. The paper describes several unique features offered by FKB, such as customizable layers, loss functions, and network ensembles. The paper concludes with a case study that applies FKB to address open questions about the robustness of an experimental approach to global climate simulation, in which subgrid physics are outsourced to deep neural network emulators. In this context, FKB enables a hyperparameter search of one hundred plus candidate models of subgrid cloud and radiation physics, initially implemented in Keras, to be transferred and used in Fortran. Such a process allows the model’s emergent behavior to be assessed, i.e., when fit imperfections are coupled to explicit planetary-scale fluid dynamics. The results reveal a previously unrecognized strong relationship between offline validation error and online performance, in which the choice of the optimizer proves unexpectedly critical. This in turn reveals many new neural network architectures that produce considerable improvements in climate model stability including some with reduced error, for an especially challenging training dataset. 
    more » « less
  6. null (Ed.)
    While cloud-resolving models can explicitly simulate the details of small-scale storm formation and morphology, these details are often ignored by climate models for lack of computational resources. Here, we explore the potential of generative modeling to cheaply recreate small-scale storms by designing and implementing a Variational Autoencoder (VAE) that performs structural replication, dimension- ality reduction, and clustering of high-resolution vertical velocity fields. Trained on ∼ 6 · 106 samples spanning the globe, the VAE successfully reconstructs the spatial structure of convection, per- forms unsupervised clustering of convective organization regimes, and identifies anomalous storm activity, confirming the potential of generative modeling to power stochastic parameterizations of convection in climate models. 
    more » « less