skip to main content

Search for: All records

Award ID contains: 1835904

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantifying user performance with metrics such as time and accuracy does not show the whole picture when researchers evaluate complex, interactive visualization tools. In such systems, performance is often influenced by different analysis strategies that statistical analysis methods cannot account for. To remedy this lack of nuance, we propose a novel analysis methodology for evaluating complex interactive visualizations at scale. We implement our analysis methods in reVISit, which enables analysts to explore participant interaction performance metrics and responses in the context of users' analysis strategies. Replays of participant sessions can aid in identifying usability problems during pilot studies and makemore »individual analysis processes salient. To demonstrate the applicability of reVISit to visualization studies, we analyze participant data from two published crowdsourced studies. Our findings show that reVISit can be used to reveal and describe novel interaction patterns, to analyze performance differences between different analysis strategies, and to validate or challenge design decisions.« less
  2. Visualizing multivariate networks is challenging because of the trade-offs necessary for effectively encoding network topology and encoding the attributes associated with nodes and edges. A large number of multivariate network visualization techniques exist, yet there is little empirical guidance on their respective strengths and weaknesses. In this paper, we describe a crowdsourced experiment, comparing node-link diagrams with on-node encoding and adjacency matrices with juxtaposed tables. We find that node-link diagrams are best suited for tasks that require close integration between the network topology and a few attributes. Adjacency matrices perform well for tasks related to clusters and when many attributesmore »need to be considered. We also reflect on our method of using validated designs for empirically evaluating complex, interactive visualizations in a crowdsourced setting. We highlight the importance of training, compensation, and provenance tracking.« less
  3. Networks are a natural way of thinking about many datasets. The data on which a network is based, however, is rarely collected in a form that suits the analysis process, making it necessary to create and reshape networks. Data wrangling is widely acknowledged to be a critical part of the data analysis pipeline, yet interactive network wrangling has received little attention in the visualization research community. In this paper, we discuss a set of operations that are important for wrangling network datasets and introduce a visual data wrangling tool, Origraph, that enables analysts to apply these operations to their datasets.more »Key operations include creating a network from source data such as tables, reshaping a network by introducing new node or edge classes, filtering nodes or edges, and deriving new node or edge attributes. Our tool, Origraph, enables analysts to execute these operations with little to no programming, and to immediately visualize the results. Origraph provides views to investigate the network model, a sample of the network, and node and edge attributes. In addition, we introduce interfaces designed to aid analysts in specifying arguments for sensible network wrangling operations. We demonstrate the usefulness of Origraph in two Use Cases: first, we investigate gender bias in the film industry, and then the influence of money on the political support for the war in Yemen.« less