skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Origraph: Interactive Network Wrangling
Networks are a natural way of thinking about many datasets. The data on which a network is based, however, is rarely collected in a form that suits the analysis process, making it necessary to create and reshape networks. Data wrangling is widely acknowledged to be a critical part of the data analysis pipeline, yet interactive network wrangling has received little attention in the visualization research community. In this paper, we discuss a set of operations that are important for wrangling network datasets and introduce a visual data wrangling tool, Origraph, that enables analysts to apply these operations to their datasets. Key operations include creating a network from source data such as tables, reshaping a network by introducing new node or edge classes, filtering nodes or edges, and deriving new node or edge attributes. Our tool, Origraph, enables analysts to execute these operations with little to no programming, and to immediately visualize the results. Origraph provides views to investigate the network model, a sample of the network, and node and edge attributes. In addition, we introduce interfaces designed to aid analysts in specifying arguments for sensible network wrangling operations. We demonstrate the usefulness of Origraph in two Use Cases: first, we investigate gender bias in the film industry, and then the influence of money on the political support for the war in Yemen.  more » « less
Award ID(s):
1751238 1835904
PAR ID:
10148288
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Conference on Visual Analytics Science and Technology (VAST)
Page Range / eLocation ID:
81 to 92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Edges in many real-world social/information networks are associated with rich text information (e.g., user-user communications or user-product reviews). However, mainstream network representation learning models focus on propagating and aggregating node attributes, lacking specific designs to utilize text semantics on edges. While there exist edge-aware graph neural networks, they directly initialize edge attributes as a feature vector, which cannot fully capture the contextualized text semantics of edges. In this paper, we propose Edgeformers, a framework built upon graph-enhanced Transformers, to perform edge and node representation learning by modeling texts on edges in a contextualized way. Specifically, in edge representation learning, we inject network information into each Transformer layer when encoding edge texts; in node representation learning, we aggregate edge representations through an attention mechanism within each node’s ego-graph. On five public datasets from three different domains, Edgeformers consistently outperform state-of-the-art baselines in edge classification and link prediction, demonstrating the efficacy in learning edge and node representations, respectively. 
    more » « less
  2. Merge trees are a valuable tool in the scientific visualization of scalar fields; however, current methods for merge tree comparisons are computationally expensive, primarily due to the exhaustive matching between tree nodes. To address this challenge, we introduce the Merge Tree Neural Network (MTNN), a learned neural network model designed for merge tree comparison. The MTNN enables rapid and high-quality similarity computation. We first demonstrate how to train graph neural networks, which emerged as effective encoders for graphs, in order to to produce embeddings of merge trees in vector spaces for efficient similarity comparison. Next, we formulate the novel MTNN model that further improves the similarity comparisons by integrating the tree and node embeddings with a new topological attention mechanism. We demonstrate the effectiveness of our model on real-world data in different domains and examine our model's generalizability across various datasets. Our experimental analysis demonstrates our approach's superiority in accuracy and efficiency. In particular, we speed up the prior state-of-the-art by more than 100x on the benchmark datasets while maintaining an error rate below 0.1%. 
    more » « less
  3. null (Ed.)
    Finding node associations across different networks is the cornerstone behind a wealth of high-impact data mining applications. Traditional approaches are often, explicitly or implicitly, built upon the linearity and/or consistency assumptions. On the other hand, the recent network embedding based methods promise a natural way to handle the non-linearity, yet they could suffer from the disparate node embedding space of different networks. In this paper, we address these limitations and tackle cross-network node associations from a new angle, i.e., cross-network transformation. We ask a generic question: Given two different networks, how can we transform one network to another? We propose an end-to-end model that learns a composition of nonlinear operations so that one network can be transformed to another in a hierarchical manner. The proposed model bears three distinctive advantages. First (composite transformation), it goes beyond the linearity/consistency assumptions and performs the cross-network transformation through a composition of nonlinear computations. Second (representation power), it can learn the transformation of both network structures and node attributes at different resolutions while identifying the cross-network node associations. Third (generality), it can be applied to various tasks, including network alignment, recommendation, cross-layer dependency inference. Extensive experiments on different tasks validate and verify the effectiveness of the proposed model. 
    more » « less
  4. null (Ed.)
    Network embedding aims to automatically learn the node representations in networks. The basic idea of network embedding is to first construct a network to describe the neighborhood context for each node, and then learn the node representations by designing an objective function to preserve certain properties of the constructed context network. The vast majority of the existing methods, explicitly or implicitly, follow a pointwise design principle. That is, the objective can be decomposed into the summation of the certain goodness function over each individual edge of the context network. In this paper, we propose to go beyond such pointwise approaches, and introduce the ranking-oriented design principle for network embedding. The key idea is to decompose the overall objective function into the summation of a goodness function over a set of edges to collectively preserve their relative rankings on the context network. We instantiate the ranking-oriented design principle by two new network embedding algorithms, including a pairwise network embedding method PaWine which optimizes the relative weights of edge pairs, and a listwise method LiWine which optimizes the relative weights of edge lists. Both proposed algorithms bear a linear time complexity, making themselves scalable to large networks. We conduct extensive experimental evaluations on five real datasets with a variety of downstream learning tasks, which demonstrate that the proposed approaches consistently outperform the existing methods. 
    more » « less
  5. This article introduces a novel mutual informationbased measure to assess the glass ceiling effect in preferential attachment networks, which advances the analysis of inequalities in attributed networks. Using Shannon entropy and generalizing to Rényi entropy, our measure evaluates the conditional probability distributions of node attributes given the node degrees of adjacent nodes, which offers a more nuanced understanding of inequality compared to traditional methods that emphasize node degree distributions and degree assortativity alone. To evaluate the efficacy of the proposed measure, we evaluate it using an analytical structural inequality model as well as historical publication data. Results show that our mutual information measure aligns well with both the theoretical model and empirical data, underscoring its reliability as a robust approach for capturing inequalities in attributed networks. Moreover, we introduce a novel stochastic optimization algorithm that utilizes a parameterized conditional logit model for edge addition. Our algorithm is shown to outperform the baseline uniform distribution based approach in mitigating the glass ceiling effect. By strategically recommending links based on this algorithm, we can effectively hinder the glass ceiling effect within networks. 
    more » « less