skip to main content


Search for: All records

Award ID contains: 1835950

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hannula, K. (Ed.)
    Active learning research emerged from the undergraduate STEM education communities of practice, some of whom identify as discipline-based education researchers (DBER). Consequently, current frameworks of active learning are largely inductive and based on emergent patterns observed in undergraduate teaching and learning. Alternatively, classic learning theories historically originate from the educational psychology community, which often takes a theory-driven, or deductive research approach. The broader transdisciplinary education research community is now struggling to reconcile the two. That is, how is a theory of active learning distinct from other theories of knowledge construction? We discuss the underpinnings of active learning in the geosciences, drawing upon extant literature from the educational psychology community on engagement. Based on Sinatra et al. engagement framework, we propose a model for active learning in the geosciences with four dimensions: behavioral, emotional, cognitive, and agentic. We then connect existing literature from the geoscience education community to the model to demonstrate the current gaps in our literature base and opportunities to move the active learning geoscience education research (GER) forward. We propose the following recommendations for future investigation of active learning in the geosciences: (1) connect future GER to our model of active learning in the geosciences, (2) measure more than content learning, (3) document research methods and outcomes with effect sizes to accumulate evidence, and (4) prioritize research on dimensions of active learning essential to the geosciences. 
    more » « less
  2. null (Ed.)
    Given the importance of fresh water, we investigated undergraduate students’ understanding of water flow and its consequences. We probed introductory geology students’ pre-instruction knowledge using a classroom management system at two large research-intensive universities. Open-ended clicker questions, where students click directly on diagrams using their smart device (e.g., cell phone, tablet) to respond, probed students’ predictions about: (1) groundwater movement and (2) velocity and erosion in a river channel. Approximately one-third of students correctly identified groundwater flow as having lateral and vertical components; however, the same number of students identified only vertical components to flow despite the diagram depicting enough topographic gradient for lateral flow. For rivers depicted as having a straight channel, students correctly identified zones of high velocity. However, for curved river channels, students incorrectly identified the inside of the bend as the location of greatest erosion and highest velocity. Systematic errors suggest that students have mental models of water flow that are not consistent with fluid dynamics. The use of students’ open-ended clicks to reveal common errors provided an efficient tool to identify conceptual challenges associated with the complex spatial and temporal processes that govern water movement in the Earth system. 
    more » « less