skip to main content


Title: Assessing Water Literacy: Undergraduate Student Conceptions of Groundwater and Surface Water Flow
Given the importance of fresh water, we investigated undergraduate students’ understanding of water flow and its consequences. We probed introductory geology students’ pre-instruction knowledge using a classroom management system at two large research-intensive universities. Open-ended clicker questions, where students click directly on diagrams using their smart device (e.g., cell phone, tablet) to respond, probed students’ predictions about: (1) groundwater movement and (2) velocity and erosion in a river channel. Approximately one-third of students correctly identified groundwater flow as having lateral and vertical components; however, the same number of students identified only vertical components to flow despite the diagram depicting enough topographic gradient for lateral flow. For rivers depicted as having a straight channel, students correctly identified zones of high velocity. However, for curved river channels, students incorrectly identified the inside of the bend as the location of greatest erosion and highest velocity. Systematic errors suggest that students have mental models of water flow that are not consistent with fluid dynamics. The use of students’ open-ended clicks to reveal common errors provided an efficient tool to identify conceptual challenges associated with the complex spatial and temporal processes that govern water movement in the Earth system.  more » « less
Award ID(s):
1835950 1640800
NSF-PAR ID:
10295403
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Water
Volume:
13
Issue:
5
ISSN:
2073-4441
Page Range / eLocation ID:
622
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Several studies have focused on the importance of river bathymetry (channel geometry) in hydrodynamic routing along individual reaches. However, its effect on other watershed processes such as infiltration and surface water (SW)‐groundwater (GW) interactions has not been explored across large river networks. Surface and sbsurface processes are interdependent, therefore, errors due to inaccurate representation of one watershed process can cascade across other hydraulic or hydrologic processes. This study hypothesizes that accurate bathymetric representation is not only essential for simulating channel hydrodynamics but also affects subsurface processes by impacting SW‐GW interactions. Moreover, quantifying the effect of bathymetry on surface and subsurface hydrological processes across a river network can facilitate an improved understanding of how bathymetric characteristics affect these processes across large spatial domains. The study tests this hypothesis by developing physically based distributed models capable of bidirectional coupling (SW‐GW) with four configurations with progressively reduced levels of bathymetric representation. A comparison of hydrologic and hydrodynamic outputs shows that changes in channel geometry across the four configurations has a considerable effect on infiltration, lateral seepage, and location of water table across the entire river network. For example, when using bathymetry with inaccurate channel conveyance capacity but accurate channel depth, peak lateral seepage rate exhibited 58% error. The results from this study provide insights into the level of bathymetric detail required for accurately simulating flooding‐related physical processes while also highlighting potential issues with ignoring bathymetry across lower order streams such as spurious backwater flow, inaccurate water table elevations, and incorrect inundation extents.

     
    more » « less
  2. Abstract

    Coastal deltaic aquifers are vulnerable to degradation from seawater intrusion, geogenic and anthropogenic contamination, and groundwater abstraction. The distribution and transport of contaminants are highly dependent on the subsurface sedimentary architecture, such as the presence of channelized features that preferentially conduct flow. Surface deposition changes in response to sea‐level rise (SLR) and sediment supply, but it remains unclear how these surface changes affect the distribution and transport of groundwater solutes in aquifers. Here, we explore the influence of SLR and sediment supply on aquifer heterogeneity and resulting effects on contaminant transport. We use realizations of subsurface heterogeneity generated by a process‐based numerical model, DeltaRCM, which simulates the evolution of a deltaic aquifer with different input sand fractions and rates of SLR. We simulate groundwater flow and solute transport through these deposits in three contamination scenarios: (a) vertical transport from widespread contamination at the land surface, (b) vertical transport from river water infiltration, and (c) lateral seawater intrusion. The simulations show that the vulnerability of deltaic aquifers to seawater intrusion correlates to sand fraction, while vertical transport of contaminants, such as widespread shallow contamination and river water infiltration, is influenced by channel stacking patterns. This analysis provides new insights into the connection between the depositional system properties and vulnerability to different modes of groundwater contamination. It also illustrates how vulnerability may vary locally within a delta due to depositional differences. Results suggest that groundwater management strategies may be improved by considering surface features, location within the delta, and the external forcings during aquifer deposition.

     
    more » « less
  3. Physical, chemical, and biological processes create and maintain the critical zone (CZ). In weathered and crystalline rocks, these processes occur over 10–100 s of meters and transform bedrock into soil. The CZ provides pore space and flow paths for groundwater, supplies nutrients for ecosystems, and provides the foundation for life. Vegetation in the aboveground CZ depends on these components and actively mediates Earth system processes like evapotranspiration, nutrient and water cycling, and hill slope erosion. Therefore, the vertical and lateral extent of the CZ can provide insight into the important chemical and physical processes that link life on the surface with geology 10–100 s meters below. In this study, we present 3.9 km of seismic refraction data in a weathered and crystalline granite in the Laramie Range, Wyoming. The refraction data were collected to investigate two ridges with clear contrasts in vegetation and slope. Given the large contrasts in slope, aspect, and vegetation cover, we expected large differences in CZ structure. However, our results suggest no significant differences in large-scale (>10 s of m) CZ structure as a function of slope or aspect. Our data appears to suggest a relationship between LiDAR-derived canopy height and depth to fractured bedrock where the tallest trees are located over regions with the shallowest depth to fractured bedrock. After separating our data by the presence or lack of vegetation, higher P-wave velocities under vegetation is likely a result of higher saturation. 
    more » « less
  4. Abstract

    This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time‐lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6‐km long longitudinal ER surveys during summer and winter. The time‐lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel‐scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.

     
    more » « less
  5. Abstract

    The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.

     
    more » « less