Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Climate change is a critical environmental issue and is a recommended core concept in the Ecological Society of America’s 4‐Dimensional Ecology Education framework. Limited work describes K‐12 students’ conceptions of the biotic impacts of climate change, yet research is lacking to explore undergraduate students’ conceptions on this topic. Our goal was to describe undergraduate student conceptions of the biotic outcomes of climate change, and characterize how these student conceptions of animal responses to climate change align with accepted scientific ideas. We used an interpretive qualitative research design and interviewed 13 undergraduate students who were enrolled in either an introductory biology or general ecology course. Through two independent codings of the same dataset, we separately addressed each of our research goals. Prior to this study, we identified three general biotic outcomes from climate change, which were confirmed by outside experts: changes to an animal’s Growth and Survival, their Reproduction, or their Distribution. Our student interviewees as a whole mentioned all three of these outcomes, and most individuals mentioned all three in their responses. Additionally, we found that most student ideas were aligned with Scientific conceptions, while a third of student ideas contained some scientific conceptions but were incomplete. Only a small percent of conceptions voiced in our sample were identified as alternative conceptions that did not align with accepted scientific ideas. These findings are important for educators who teach climate change, as they suggest that undergraduate students come to our classes with productive resources; however, our findings also identify concepts where students may struggle or enter classrooms with a more incomplete understanding.more » « less
-
Student understanding of climate change is an active and growing area of research, but little research has documented undergraduate students’ knowledge about the biotic impacts of climate change. Here, we address this literature gap by presenting the Inventory of Biotic Climate Literacy (IBCL), a concept inventory developed to assess undergraduate biology student knowledge of how climate change impacts living things. We developed the IBCL through literature review, student and expert interviews, student field tests, and expert review. We implemented two large nationwide field tests and conducted multiple psychometric analyses on these datasets. These analyses resulted in a final tool of 30 items measuring 16 constructs related to the biotic impacts of climate change. We discovered that the final IBCL does not represent a single, simple construct but rather the complicated and interactive concepts that comprise this topic. We suggest that sum scores are still a valuable measure, as certain groups (upperclassmen and politically liberal individuals) scored significantly higher. We also found value in analyzing individual student performance on the IBCL by developing student profiles. The IBCL represents an important tool in assessing student understanding of the complex and growing problem of climate change and its impact on the living world.more » « less
-
Undergraduate biology educators strive to understand how to best teach students the concepts of climate change. The root of this understanding is the establishment of what students know about climate change. This research aims to describe undergraduate biology students’ conceptions of climate change and their argument practices and associated cognitive biases in how they think about the topic. We used qualitative conception interviews to obtain data from 26 American biology undergraduate students who predicted how climate change would affect a forested ecosystem after an average of 1° increase in Fahrenheit (0.5°C change) over 25 years. Through deductive coding, we found the majority of students’ predictions agreed with expert ideas. However, the students used various argument strategies (i.e., Reasoning and Cognitive Biases) in defending their choices, including Ecological Explanations, Observations, Anchoring, and Contrast Effects.more » « less
-
Research Problem: Climate change is one of the most important environmental, social, and economic issues of our time. The documented impacts of climate change are extensive. Climate change education can help students link this global issue to students’ everyday lives, foster a climate-literate public, and serve as motivation for action. Yet prior to instructional interventions, the first step in promoting conceptual change is to describe expert and novice conceptions or mental models of the topic (Treagust and Duit 2009). Published studies about students’ climate change knowledge primarily stem from the earth and atmospheric sciences, and focus on students’ knowledge of the mechanisms causing global warming and of the abiotic systems important to climate change. Limited research has documented undergraduate students’ knowledge about the biotic impacts of climate change. Our goal was to describe student/novice and instructor/expert conceptual knowledge of the biotic impacts of climate change. Research Design: We conducted interviews with 30 undergraduates and 10 instructors who are students or teaching in Introductory Biology or Ecology classes. Our semi-structured interview protocol probed participants’ conceptions of the mechanisms, outcomes and levels of impact that climate change has on the biological world. Participants were taken from varying institutions across the US (Baccalaureate, Master’s, and Doctoral). Analyses: Following transcription of all interviews, we used thematic coding analysis to describe novice and expert conceptions of the biotic impacts to climate change. We also compared across interview populations to describe how novice and expert conceptions compare. Contribution: Our findings contribute understanding of biology student and expert knowledge of the biotic impacts of climate change and contribute more broadly to the field of climate science where research on understanding of the biotic impacts of climate change is minimal. Our work will represent a novel perspective because most climate education research at the university-level has focused on earth and atmospheric science students. Further, this work is the first step in a larger project that aims to develop valid and reliable concept inventory related to biotic impacts of climate change – an instrument sorely needed to properly address improvements to climate change education.more » « less
An official website of the United States government

Full Text Available