skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Student reasonings and cognitive biases in climate change predictions
Undergraduate biology educators strive to understand how to best teach students the concepts of climate change. The root of this understanding is the establishment of what students know about climate change. This research aims to describe undergraduate biology students’ conceptions of climate change and their argument practices and associated cognitive biases in how they think about the topic. We used qualitative conception interviews to obtain data from 26 American biology undergraduate students who predicted how climate change would affect a forested ecosystem after an average of 1° increase in Fahrenheit (0.5°C change) over 25 years. Through deductive coding, we found the majority of students’ predictions agreed with expert ideas. However, the students used various argument strategies (i.e., Reasoning and Cognitive Biases) in defending their choices, including Ecological Explanations, Observations, Anchoring, and Contrast Effects.  more » « less
Award ID(s):
1836522
PAR ID:
10493582
Author(s) / Creator(s):
;
Publisher / Repository:
Science Education
Date Published:
Journal Name:
Science Education
Volume:
108
Issue:
1
ISSN:
0036-8326
Page Range / eLocation ID:
86 to 106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fiedler, Daniela (Ed.)
    Previous research has shown that students employ intuitive thinking when understanding scientific concepts. Three types of intuitive thinking—essentialist, teleological, and anthropic thinking—are used in biology learning and can lead to misconceptions. However, it is unknown how commonly these types of intuitive thinking, or cognitive construals, are used spontaneously in students’ explanations across biological concepts and whether this usage is related to endorsement of construal-consistent misconceptions. In this study, we examined how frequently undergraduate students across two U.S. universities ( N = 807) used construal-consistent language (CCL) to explain in response to open-ended questions related to five core biology concepts (e.g., evolution), how CCL use differed by concept, and how this usage was related to misconceptions agreement. We found that the majority of students used some kind of CCL in the responses to these open-ended questions and that CCL use varied by target concept. We also found that students who used CCL in their response agreed more strongly with misconception statements, a relationship driven by anthropocentric language use, or language that focused on humans. These findings suggest that American university students use intuitive thinking when reasoning about biological concepts with implications for their understanding. 
    more » « less
  2. Abstract Climate change is a critical environmental issue and is a recommended core concept in the Ecological Society of America’s 4‐Dimensional Ecology Education framework. Limited work describes K‐12 students’ conceptions of the biotic impacts of climate change, yet research is lacking to explore undergraduate students’ conceptions on this topic. Our goal was to describe undergraduate student conceptions of the biotic outcomes of climate change, and characterize how these student conceptions of animal responses to climate change align with accepted scientific ideas. We used an interpretive qualitative research design and interviewed 13 undergraduate students who were enrolled in either an introductory biology or general ecology course. Through two independent codings of the same dataset, we separately addressed each of our research goals. Prior to this study, we identified three general biotic outcomes from climate change, which were confirmed by outside experts: changes to an animal’s Growth and Survival, their Reproduction, or their Distribution. Our student interviewees as a whole mentioned all three of these outcomes, and most individuals mentioned all three in their responses. Additionally, we found that most student ideas were aligned with Scientific conceptions, while a third of student ideas contained some scientific conceptions but were incomplete. Only a small percent of conceptions voiced in our sample were identified as alternative conceptions that did not align with accepted scientific ideas. These findings are important for educators who teach climate change, as they suggest that undergraduate students come to our classes with productive resources; however, our findings also identify concepts where students may struggle or enter classrooms with a more incomplete understanding. 
    more » « less
  3. Shaffer, Justin (Ed.)
    ABSTRACT Argumentation is vital in the development of scientific knowledge, and students who can argue from evidence and support their claims develop a deeper understanding of science. In this study, the Argument-Driven Inquiry instruction model was implemented in a two-semester sequence of introductory biology laboratories. Student’s scientific argumentation sessions were video recorded and analyzed using the Assessment of Scientific Argumentation in the Classroom observation protocol. This protocol separates argumentation into three subcategories: cognitive (how the group develops understanding), epistemic (how consistent the group’s process is with the culture of science), and social (how the group members interact with each other). We asked whether students are equally skilled in all subcategories of argumentation and how students’ argumentation skills differ based on lab exercise and course. Students scored significantly higher on the social than the cognitive and epistemic subcategories of argumentation. Total argumentation scores were significantly different between the two focal investigations in Biology Laboratory I but not between the two focal investigations in Biology Laboratory II. Therefore, student argumentation skills were not consistent across content; the design of the lab exercises and their implementation impacted the level of argumentation that occurred. These results will ultimately aid in the development and expansion of Argument-Driven Inquiry instructional models, with the goal of further enhancing students’ scientific argumentation skills and understanding of science. 
    more » « less
  4. Research Problem: Climate change is one of the most important environmental, social, and economic issues of our time. The documented impacts of climate change are extensive. Climate change education can help students link this global issue to students’ everyday lives, foster a climate-literate public, and serve as motivation for action. Yet prior to instructional interventions, the first step in promoting conceptual change is to describe expert and novice conceptions or mental models of the topic (Treagust and Duit 2009). Published studies about students’ climate change knowledge primarily stem from the earth and atmospheric sciences, and focus on students’ knowledge of the mechanisms causing global warming and of the abiotic systems important to climate change. Limited research has documented undergraduate students’ knowledge about the biotic impacts of climate change. Our goal was to describe student/novice and instructor/expert conceptual knowledge of the biotic impacts of climate change. Research Design: We conducted interviews with 30 undergraduates and 10 instructors who are students or teaching in Introductory Biology or Ecology classes. Our semi-structured interview protocol probed participants’ conceptions of the mechanisms, outcomes and levels of impact that climate change has on the biological world. Participants were taken from varying institutions across the US (Baccalaureate, Master’s, and Doctoral). Analyses: Following transcription of all interviews, we used thematic coding analysis to describe novice and expert conceptions of the biotic impacts to climate change. We also compared across interview populations to describe how novice and expert conceptions compare. Contribution: Our findings contribute understanding of biology student and expert knowledge of the biotic impacts of climate change and contribute more broadly to the field of climate science where research on understanding of the biotic impacts of climate change is minimal. Our work will represent a novel perspective because most climate education research at the university-level has focused on earth and atmospheric science students. Further, this work is the first step in a larger project that aims to develop valid and reliable concept inventory related to biotic impacts of climate change – an instrument sorely needed to properly address improvements to climate change education. 
    more » « less
  5. Vision and Change challenged biology instructors to develop evidence-based instructional approaches that were grounded in the core concepts and competencies of biology. This call for reform provides an opportunity for new educational tools to be incorporated into biology education. In this essay, we advocate for learning progressions as one such educational tool. First, we address what learning progressions are and how they leverage research from the cognitive and learning sciences to inform instructional practices. Next, we use a published learning progression about carbon cycling to illustrate how learning progressions describe the maturation of student thinking about a key topic. Then, we discuss how learning progressions can inform undergraduate biology instruction, citing three particular learning progressions that could guide instruction about a number of key topics taught in introductory biology courses. Finally, we describe some challenges associated with learning progressions in undergraduate biology and some recommendations for how to address these challenges. 
    more » « less