skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observation-derived ice growth curves show patterns and trends in maximum ice thickness and safe travel duration of Alaskan lakes and rivers
Abstract. The formation, growth, and decay of freshwater ice on lakes andrivers are fundamental processes of northern regions with wide-rangingimplications for socio-ecological systems. Ice thickness at the end ofwinter is perhaps the best integration of cold-season weather and climate,while the duration of thick and growing ice cover is a useful indicator forthe winter travel and recreation season. Both maximum ice thickness (MIT)and ice travel duration (ITD) can be estimated from temperature-driven icegrowth curves fit to ice thickness observations. We simulated and analyzedice growth curves based on ice thickness data collected from a range ofobservation programs throughout Alaska spanning the past 20–60 years tounderstand patterns and trends in lake and river ice. Results suggestreductions in MIT (thinning) in several northern, interior, and coastalregions of Alaska and overall greater interannual variability in riverscompared to lakes. Interior regions generally showed less variability in MITand even slightly increasing trends in at least one river site. Average ITDranged from 214 d in the northernmost lakes to 114 d acrosssouthernmost lakes, with significant decreases in duration for half ofsites. River ITD showed low regional variability but high interannualvariability, underscoring the challenges with predictingseasonally consistent river travel. Standardization and analysis of theseice observation data provide a comprehensive summary for understandingchanges in winter climate and its impact on freshwater ice services.  more » « less
Award ID(s):
1836523 1636476
PAR ID:
10280457
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
14
Issue:
11
ISSN:
1994-0424
Page Range / eLocation ID:
3595 to 3609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change is contributing to rapid changes in lake ice cover across the Northern Hemisphere, thereby impacting local communities and ecosystems. Using lake ice cover time‐series spanning over 87 yr for 43 lakes across the Northern Hemisphere, we found that the interannual variability in ice duration, measured as standard deviation, significantly increased in only half of our studied lakes. We observed that the interannual variability in ice duration peaked when lakes were, on average, covered by ice for about 1 month, while both longer and shorter long‐term mean ice cover duration resulted in lower interannual variability in ice duration. These results demonstrate that the ice cover duration can become so short that the interannual variability rapidly declines. The interannual variability in ice duration showed a strong dependency on global temperature anomalies and teleconnections, such as the North Atlantic Oscillation and El Niño–Southern Oscillation. We conclude that many lakes across the Northern Hemisphere will experience a decline in interannual ice cover variability and shift to open water during the winter under a continued global warming trend which will affect lake biological, cultural, and economic processes. 
    more » « less
  2. This dataset provides a comprehensive, field-validated Synthetic Aperture Radar (SAR) dataset for Arctic lake ice classification, with a particular emphasis on under-ice water salinity. It includes in situ measurements from 104 lakes (132 measurement sites) across northern Alaska collected in May 2024, capturing data on lake ice thickness, snow depth, lake depth, and specific conductance of unfrozen water beneath the ice. These field observations are integrated with multi-season Sentinel-1 SAR imagery from early winter (January) to late winter (May), along with additional geospatial datasets such as Interferometric Synthetic Aperture Radar (IfSAR)-derived elevation models and summer ice-off timing. The dataset enables improved differentiation of bedfast and floating ice lakes, particularly identifying lakes with brackish to saline water that were previously misclassified as bedfast ice lakes using traditional SAR-based remote sensing approaches. This resource supports research in permafrost stability, Arctic hydrology, climate change impacts, and winter water resource availability. This work was supported by grants from the U.S. National Science Foundation (OPP-2336164 and OPP-2336165) and the European Research Council project No. 951288 (Q-Arctic). Additional support was provided under a Broad Agency Announcement award from ERDC-CRREL, PE 0603119A. 
    more » « less
  3. Abstract Many modern sea ice models used in global climate models represent the subgrid‐scale heterogeneity in sea ice thickness with an ice thickness distribution (ITD), which improves model realism by representing the significant impact of the high spatial heterogeneity of sea ice thickness on thermodynamic and dynamic processes. Most models default to five thickness categories. However, little has been done to explore the effects of the resolution of this distribution (number of categories) on sea‐ice feedbacks in a coupled model framework and resulting representation of the sea ice mean state. Here, we explore this using sensitivity experiments in CESM2 with the standard 5 ice thickness categories and 15 ice thickness categories. Increasing the resolution of the ITD in a run with preindustrial climate forcing results in substantially thicker Arctic sea ice year‐round. Analyses show that this is a result of the ITD influence on ice strength. With 15 ITD categories, weaker ice occurs for the same average thickness, resulting in a higher fraction of ridged sea ice. In contrast, the higher resolution of thin ice categories results in enhanced heat conduction and bottom growth and leads to only somewhat increased winter Antarctic sea ice volume. The spatial resolution of the ICESat‐2 satellite mission provides a new opportunity to compare model outputs with observations of seasonal evolution of the ITD in the Arctic (ICESat‐2; 2018–2021). Comparisons highlight significant differences from the ITD modeled with both runs over this period, likely pointing to underlying issues contributing to the representation of average thickness. 
    more » « less
  4. Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents the snow depths, black and white ice thickness, and Secchi depths during the period of ice cover each winter. 
    more » « less
  5. Abstract This paper describes a remotely monitored buoy that, when deployed in open water prior to freeze up, permits scientists to monitor not only temperature with depth, and hence freeze up and sea ice thickness, but also the progression of sea ice development—e.g., the extent of cover at a given depth as it grows (solid fraction), the brine volume of the ice, and the salinity of the water just below, which is driven by brine expulsion. Microstructure and In situ Salinity and Temperature (MIST) buoys use sensor “ladders” that, in our prototypes, extend to 88 cm below the surface. We collected hourly measurements of surface air temperature and water temperature and electrical impedance every 3 cm to track the seasonal progression of sea ice growth in Elson Lagoon (Utqiaġvik, Alaska) over the 2017/18 ice growth season. The MIST buoy has the potential to collect detailed sea ice microstructural information over time and help scientists monitor all parts of the growth/melt cycle, including not only the freezing process but the effects of meteorological changes, changing snow cover, the interaction of meltwater, and drainage. Significance Statement There is a need to better understand how an increasing influx of freshwater, one part of a changing Arctic climate, will affect the development of sea ice. Current instruments can provide information on the growth rate, extent, and thickness of sea ice, but not direct observations of the structure of the ice during freeze up, something that is tied to salinity and local air and water temperature. A first deployment in Elson Lagoon in Utqiaġvik, Alaska, showed promising results; we observed fluctuations in ice temperatures in response to brief warmings in air temperature that resulted in changes in the conductivity, liquid fraction, and brine volume fraction within the ice. 
    more » « less