skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1836690

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper studies the “age of information” (AoI) in a multi-source status update system where N active sources each send updates of their time-varying process to a monitor through a server with packet delivery errors. We analyze the average AoI for stationary randomized and round-robin scheduling policies. For both of these scheduling policies, we further analyze the effect of packet retransmission policies, i.e., retransmission without re- sampling, retransmission with resampling, or no retransmission, when errors occur. Expressions for the average AoI are derived for each case. It is shown that the round-robin schedule policy in conjunction with retransmission with resampling when errors occur achieves the lowest average AoI among the considered cases. For stationary randomized schedules with equiprobable source selection, it is further shown that the average AoI gap to round-robin schedules with the same packet management policy scales as O(N). Finally, for stationary randomized policies, the optimal source selection probabilities that minimize a weighted sum average AoI metric are derived. 
    more » « less
  2. This paper studies the “age of information” in a general multi-source multi-hop wireless network with explicit channel contention. Specifically, the scenario considered in this paper assumes that each node in the network is both a source and a monitor of information, that all nodes wish to receive fresh status updates from all other nodes in the network, and that only one node can transmit in each time slot. Lower bounds for peak and average age of information are derived and expressed in terms of fundamental graph properties including the connected domination number. An algorithm to generate near-optimal periodic status update schedules based on sequential optimal flooding is also developed. These schedules are analytically shown to exactly achieve the peak age bound and also achieve the average age bound within an additive gap scaling linearly with the size of the network. Moreover, the results are sufficiently general to apply to any connected network topology. Illustrative numerical examples are presented which serve to verify the analysis for several canonical network topologies of arbitrary size, as well as every connected network with nine or fewer nodes. 
    more » « less