skip to main content


Search for: All records

Award ID contains: 1836697

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present evidence that the two-dimensional bulk of monolayer WTe 2 contains electrons and holes bound by Coulomb attraction—excitons—that spontaneously form in thermal equilibrium. On cooling from room temperature to 100 K, the conductivity develops a V-shaped dependence on electrostatic doping, while the chemical potential develops a step at the neutral point. These features are much sharper than is possible in an independent-electron picture, but they can be accounted for if electrons and holes interact strongly and are paired in equilibrium. Our calculations from first principles show that the exciton binding energy is larger than 100 meV and the radius as small as 4 nm, explaining their formation at high temperature and doping levels. Below 100 K, more strongly insulating behaviour is seen, suggesting that a charge-ordered state forms. The observed absence of charge density waves in this state is surprising within an excitonic insulator picture, but we show that it can be explained by the symmetries of the exciton wavefunction. Therefore, in addition to being a topological insulator, monolayer WTe 2 exhibits strong correlations over a wide temperature range. 
    more » « less