skip to main content


Title: Evidence for equilibrium exciton condensation in monolayer WTe2
Abstract We present evidence that the two-dimensional bulk of monolayer WTe 2 contains electrons and holes bound by Coulomb attraction—excitons—that spontaneously form in thermal equilibrium. On cooling from room temperature to 100 K, the conductivity develops a V-shaped dependence on electrostatic doping, while the chemical potential develops a step at the neutral point. These features are much sharper than is possible in an independent-electron picture, but they can be accounted for if electrons and holes interact strongly and are paired in equilibrium. Our calculations from first principles show that the exciton binding energy is larger than 100 meV and the radius as small as 4 nm, explaining their formation at high temperature and doping levels. Below 100 K, more strongly insulating behaviour is seen, suggesting that a charge-ordered state forms. The observed absence of charge density waves in this state is surprising within an excitonic insulator picture, but we show that it can be explained by the symmetries of the exciton wavefunction. Therefore, in addition to being a topological insulator, monolayer WTe 2 exhibits strong correlations over a wide temperature range.  more » « less
Award ID(s):
1836697 1719797 2004701
NSF-PAR ID:
10314041
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Physics
Volume:
18
Issue:
1
ISSN:
1745-2473
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Coupled two-dimensional electron-hole bilayers provide a unique platform to study strongly correlated Bose-Fermi mixtures in condensed matter. Electrons and holes in spatially separated layers can bind to form interlayer excitons, composite Bosons expected to support high-temperature exciton condensates. The interlayer excitons can also interact strongly with excess charge carriers when electron and hole densities are unequal. Here, we use optical spectroscopy to quantitatively probe the local thermodynamic properties of strongly correlated electron-hole fluids in MoSe2/hBN/WSe2heterostructures. We observe a discontinuity in the electron and hole chemical potentials at matched electron and hole densities, a definitive signature of an excitonic insulator ground state. The excitonic insulator is stable up to a Mott density of ~0.8 × 1012cm−2and has a thermal ionization temperature of ~70 K. The density dependence of the electron, hole, and exciton chemical potentials reveals strong correlation effects across the phase diagram. Compared with a non-interacting uniform charge distribution, the correlation effects lead to significant attractive exciton-exciton and exciton-charge interactions in the electron-hole fluid. Our work highlights the unique quantum behavior that can emerge in strongly correlated electron-hole systems.

     
    more » « less
  2. Abstract

    Excitons are spin integer particles that are predicted to condense into a coherent quantum state at sufficiently low temperature. Here by using photocurrent imaging we report experimental evidence of formation and efficient transport of non-equilibrium excitons in Bi2-xSbxSe3nanoribbons. The photocurrent distributions are independent of electric field, indicating that photoexcited electrons and holes form excitons. Remarkably, these excitons can transport over hundreds of micrometers along the topological insulator (TI) nanoribbons before recombination at up to 40 K. The macroscopic transport distance, combined with short carrier lifetime obtained from transient photocurrent measurements, indicates an exciton diffusion coefficient at least 36 m2 s−1, which corresponds to a mobility of 6 × 104 m2 V−1 s−1at 7 K and is four order of magnitude higher than the value reported for free carriers in TIs. The observation of highly dissipationless exciton transport implies the formation of superfluid-like exciton condensate at the surface of TIs.

     
    more » « less
  3. Mixed-dimensional van der Waals heterojunctions involve interfacing materials with different dimensionalities, such as a 2D transition metal dichalcogenide and a 0D organic semiconductor. These heterojunctions have shown unique interfacial properties not found in either individual component. Here, we use femtosecond transient absorption to reveal photoinduced charge transfer and interlayer exciton formation in a mixed-dimensional type-II heterojunction between monolayer MoS2 and vanadyl phthalocyanine (VOPc). Selective excitation of the MoS2 exciton leads to hole transfer from the MoS2 valence band to VOPc highest occupied molecular orbit in ∼710 fs. On the contrary, selective photoexcitation of the VOPc layer leads to instantaneous electron transfer from its excited state to the conduction band of MoS2 in less than 100 fs. This light-initiated ultrafast separation of electrons and holes across the heterojunction interface leads to the formation of an interlayer exciton. These interlayer excitons formed across the interface lead to longer-lived charge-separated states of up to 2.5 ns, longer than in each individual layer of this heterojunction. Thus, the longer charge-separated state along with ultrafast charge transfer times provide promising results for photovoltaic and optoelectronic device applications.

     
    more » « less
  4. A two-dimensional (2D) topological insulator exhibits the quantum spin Hall (QSH) effect, in which topologically protected conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported in an atomically thin material, monolayer WTe 2 . Here, we directly image the local conductivity of monolayer WTe 2 using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, and is suppressed by magnetic field as expected. We observe additional conducting features which can be explained by edge states following boundaries between topologically trivial and nontrivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe 2 . Meanwhile, they reveal the robustness of the QSH channels and the potential to engineer them in the monolayer material platform. 
    more » « less
  5. null (Ed.)
    Abstract We report on optical spectroscopic study of the Sr 3 (Ir 1- x Ru x ) 2 O 7 system over a wide doping regime. We find that the changes in the electronic structure occur in the limited range of the concentration of Ru ions where the insulator–metal transition occurs. In the insulating regime, the electronic structure associated with the effective total angular momentum J eff  = 1/2 Mott state remains robust against Ru doping, indicating the localization of the doped holes. Upon entering the metallic regime, the Mott gap collapses and the Drude-like peak with strange metallic character appears. The evolution of the electronic structure registered in the optical data can be explained in terms of a percolative insulator–metal transition. The phonon spectra display anomalous doping evolution of the lineshapes. While the phonon modes of the compounds deep in the insulating and metallic regimes are almost symmetric, those of the semiconducting compound with x  = 0.34 in close proximity to the doping-driven insulator–metal transition show a pronounced asymmetry. The temperature evolution of the phonon modes of the x  = 0.34 compound reveals the asymmetry is enhanced in the antiferromagnetic state. We discuss roles of the S  = 1 spins of the Ru ions and charge excitations for the conspicuous lineshape asymmetry of the x  = 0.34 compound. 
    more » « less