skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1836921

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We experimentally demonstrate quantum channel monitoring by wavelength-time multiplexing of classical wrapper bits with quantum payloads. Bit-error-rate measurements of 5 Gb/s classical bits infer the coincidence-to-accidental ratio of the quantum channel up to 13.3 dB.

     
    more » « less
  2. Classical optical devices lack precision when they operate on single photons. We report a Quantum Digital Twin (QDT) to improve Quantum Key Distribution (QKD) implementations. We show a QDT increasing the Key Exchange Rate under environmental events. 
    more » « less
  3. This paper proposes an evolutionary transfer learning approach (Evol-TL) for scalable quality-of-transmission (QoT) estimation in multi-domain elastic optical networks (MD-EONs). Evol-TL exploits a broker-based MD-EON architecture that enables cooperative learning between the broker plane (end-to-end) and domain-level (local) machine learning functions while securing the autonomy of each domain. We designed a genetic algorithm to optimize the neural network architectures and the sets of weights to be transferred between the source and destination tasks. We evaluated the performance of Evol-TL with three case studies considering the QoT estimation task for lightpaths with (i) different path lengths (in terms of the numbers of fiber links traversed), (ii) different modulation formats, and (iii) different device conditions (emulated by introducing different levels of wavelength-specific attenuation to the amplifiers). The results show that the proposed approach can reduce the average amount of required training data by up to13×<#comment/>while achieving an estimation accuracy above 95%.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)