Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Trees regulate canopy temperature (Tc) via transpiration to maintain an optimal temperature range. In diverse forests such as those of the eastern United States, the sensitivity ofTcto changing environmental conditions may differ across species, reflecting wide variability in hydraulic traits. However, these links are not well understood in mature forests, whereTcdata have historically been difficult to obtain. Recent advancement of thermal imaging cameras (TICs) enablesTcmeasurement of previously inaccessible tall trees. By leveraging TIC and sap flux measurements, we investigated how co‐occurring trees (Quercus alba,Q. falcata, andPinus virginiana) change theirTcand vapor pressure deficit near the canopy surface (VPDc) in response to changing air temperature (Ta) and atmospheric VPD (VPDa). We found a weaker cooling effect for the species that most strongly regulates stomatal function during dry conditions (isohydric;P. virginiana). Specifically, the pine had higherTc(up to 1.3°C) and VPDc(up to 0.3 kPa) in the afternoon and smaller sensitivity of both∆T(=Tc − Ta) and∆VPD (=VPDc − VPDa) to changing conditions. Furthermore, significant differences inTcand VPDcbetween sunlit and shaded portions of a canopy implied a non‐evaporative effect onTcregulation. Specifically,Tcwas more homogeneous within the pine canopy, reflecting differences in leaf morphology that allow higher canopy transmittance of solar radiation. The variability ofTcamong species (up to 1.3°C) was comparable to the previously reported differences in surface temperature across land cover types (1°C to 2°C), implying the potential for significant impact of species composition change on local/regional surface temperature.more » « less
-
Climate change will bring about changes in meteorological and ecological factors that are currently used in global-scale models to calculate biogenic emissions. By comparing long-term datasets of biogenic compounds to modeled emissions, this work seeks to improve understanding of these models and their driving factors. We compare speciated biogenic volatile organic compound (BVOC) measurements at the Virginia Forest Research Laboratory located in Fluvanna County, VA, USA, for the year 2020 with emissions estimated by the Model of Emissions of Gases and Aerosols from Nature version 3.2 (MEGANv3.2). The emissions were subjected to oxidation in a 0-D box model (F0AM v4.3) to generate time series of modeled concentrations. We find that default light-dependent fractions (LDFs) in the emissions model do not accurately represent observed temporal variability in regional observations. Some monoterpenes with a default light dependence are better represented using light-independent emissions throughout the year (LDFα-pinene=0, as opposed to 0.6), while others are best represented using a seasonally or temporally dependent light dependence. For example, limonene has the highest correlation between modeled and measured concentrations using an LDF =0 for January through April and roughly 0.74–0.97 in the summer months, in contrast to the default value of 0.4. The monoterpenes β-thujene, sabinene, and γ-terpinene similarly have an LDF that varies throughout the year, with light-dependent behavior in summer, while camphene and α-fenchene follow light-independent behavior throughout the year. Simulations of most compounds are consistently underpredicted in the winter months compared to observed concentrations. In contrast, day-to-day variability in the concentrations during summer months are relatively well captured using the coupled emissions–chemistry model constrained by regional concentrations of NOX and O3.more » « lessFree, publicly-accessible full text available November 12, 2025
-
Volatile organic compounds (VOCs) contribute to air pollution both directly, as hazardous gases, and through their reactionswith common atmospheric oxidants to produce ozone, particulate matter, andother hazardous air pollutants. There are enormous ranges of structures andreaction rates among VOCs, and there is consequently a need to accuratelycharacterize the spatial and temporal distribution of individual identifiedcompounds. Current VOC measurements are often made with complex, expensiveinstrumentation that provides high chemical detail but is limited in itsportability and requires high expense (e.g., mobile labs) for spatiallyresolved measurements. Alternatively, periodic collection of samples oncartridges is inexpensive but demands significant operator interaction thatcan limit possibilities for time-resolved measurements or distributedmeasurements across a spatial area. Thus, there is a need for simple,portable devices that can sample with limited operator presence to enabletemporally and/or spatially resolved measurements. In this work, we describenew portable and programmable VOC samplers that enable simultaneouscollection of samples across a spatially distributed network, validate theirreproducibility, and demonstrate their utility. Validation experimentsconfirmed high precision between samplers as well as the ability ofminiature ozone scrubbers to preserve reactive analytes collected oncommercially available adsorbent gas sampling cartridges, supportingsimultaneous field deployment across multiple locations. In indoorenvironments, 24 h integrated samples demonstrate observable day-to-dayvariability, as well as variability across very short spatial scales(meters). The utility of the samplers was further demonstrated by locatingoutdoor point sources of analytes through the development of a new mappingapproach that employs a group of the portable samplers and back-projectiontechniques to assess a sampling area with higher resolution than stationarysampling. As with all gas sampling, the limits of detection depend onsampling times and the properties of sorbents and analytes. The limit of detectionof the analytical system used in this work is on the order of nanograms,corresponding to mixing ratios of 1–10 pptv after 1 h of sampling atthe programmable flow rate of 50–250 sccm enabled by the developed system.The portable VOC samplers described and validated here provide a simple,low-cost sampling solution for spatially and/or temporally variablemeasurements of any organic gases that are collectable on currentlyavailable sampling media.more » « less
-
Volatile organic compounds (VOCs) range in their reaction rates with atmospheric oxidants by several orders of magnitude. Therefore, studying their atmospheric concentrations across seasons and years requires isomer resolution to fully understand their impact on oxidant budgets and secondary organic aerosol formation. An automated gas chromatograph/flame ionization detector (GC-FID) was developed for hourly sampling and analysis of C 5 –C 15 hydrocarbons at remote locations. Samples are collected on an air-cooled multibed adsorbent trap for preconcentration of hydrocarbons in the target volatility range, specifically designed to minimize dead volume and enable rapid heating and sample flushing. Instrument control uses custom electronics designed to allow flexible autonomous operation at moderate cost, with automated data transfer and processing. The instrument has been deployed for over two years with samples collected mid-canopy from the Virginia Forest Laboratory located in the Pace research forest in central Virginia. We present here the design of the instrument itself, control electronics, and calibration and data analysis approaches to facilitate the development of similar systems by the atmospheric chemistry community. Detection limits of all species are in the range of a few to tens of ppt and the instrument is suitable for detection of a wide range of biogenic, lightly oxygenated, and anthropogenic (predominantly hydrocarbon) compounds. Data from calibrations are examined to provide understanding of instrument stability and quantify uncertainty. In this work, we present challenges and recommendations for future deployments, as well as suggested adaptions to decrease required maintenance and increase instrument up-time. The presented design is particularly suitable for long-term and remote deployment campaigns where access, maintenance, and transport of materials are difficult.more » « less
-
Abstract. Emissions from natural sources are driven by various external stimuli such as sunlight, temperature, and soil moisture. Once biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere, they rapidly react with atmospheric oxidants, which has significant impacts on ozone and aerosol budgets. However, diurnal, seasonal, and interannual variability in these species are poorly captured in emissions models due to a lack of long-term, chemically speciated measurements. Therefore, increasing the monitoring of these emissions will improve the modeling of ozone and secondary organic aerosol concentrations. Using 2 years of speciated hourly BVOC data collected at the Virginia Forest Research Lab (VFRL) in Fluvanna County, Virginia, USA, we examine how minor changes in the composition of monoterpenes between seasons are found to have profound impacts on ozone and OH reactivity. The concentrations of a range of BVOCs in the summer were found to have two different diurnal profiles, which, we demonstrate, appear to be driven by light-dependent versus light-independent emissions. Factor analysis was used to separate the two observed diurnal profiles and determine the contribution from each emission type. Highly reactive BVOCs were found to have a large influence on atmospheric reactivity in the summer, particularly during the daytime. These findings reveal the need to monitor species with high atmospheric reactivity, even though they have low concentrations, to more accurately capture their emission trends in models.more » « less
-
Biogenic volatile organic compounds (BVOCs) contribute the majority of reactive organic carbon to the atmosphere and lead to aerosol formation through reaction with atmospheric oxidants including ozone and hydroxyl radicals. One class of BVOCs, sesquiterpenes, have a high reactivity with ozone but exist at lower concentrations compared to other BVOCs, and there are relatively few measurements of their concentrations in different environments or their importance in the atmospheric oxidant budget. To help close this knowledge gap, we examine concentrations of isomer-resolved sesquiterpene concentrations collected hourly at two sites in Virginia that are representative of different ecosystems in the southeastern US. Sesquiterpene concentrations are presented and discussed in relation to their diurnal patterns and used to estimate their contribution to reactivity with common gas-phase oxidants. Twenty-four sesquiterpenes were identified at the sites, eleven of which were observed at both sites. Total sesquiterpene concentrations were found to range between 0.8 and 2 ppt with no single isomer dominating throughout. Hydroxyl activity is similarly diverse, with no particular isomer dominating activity at either site. Ozone reactivity, however, was found to be dominated (∼3/4 total reactivity) by β-caryophyllene and humulene despite these compounds representing roughly only 10% of total sesquiterpene mass, highlighting their importance as the major driver of sesquiterpene-ozone reactivity. Average reaction rate constants for sesquiterpenes with ozone and hydroxyl radicals were calculated for both sites as a method to simplify future atmospheric modelling concerning sesquiterpenes. This work provides broad insight into the composition and impacts of sesquiterpenes, suggesting that sesquiterpene composition is relatively similar between sites. Furthermore, while the calculated average sesquiterpene-ozone reaction rate constants are at least an order of magnitude higher than that of more prevalent BVOC classes (isoprene and monoterpenes), their low concentrations suggest their impacts on atmospheric reactivity are expected to be limited to periods of high emissions.more » « less
-
{"Abstract":["Two years (September 15th, 2019-September 14th, 2021) of biogenic volatile organic compound concentration data from within the canopy of a forest in Fluvanna County, Virginia. An associated manuscript is published in atmospheric chemistry and physics titled - "Measurement Report: Variability in the composition of biogenic volatile organic compounds in a southeastern US forest and their role in atmospheric reactivity". The doi for this manuscript is: 10.5194/acp-2021-416.\n\nThe original version of this data set did not correct for when the data was sampled vs. when it was analyzed. The most recent version has been updated to reflect this and additional detail has been provided. Additionally, the calibration method for methacrolein and methyl vinyl ketone has been updated in this version of the data set. Given these changes, we ask that you use the most recent version.\n\nAdditional manuscripts associated with this data include: 'Minor contributions of daytime monoterpenes are major contributors to atmospheric reactivity' which discusses diurnal and seasonal variability found within the data and 'An autonomous remotely operated gas chromatograph for chemically resolved monitoring of atmospheric volatile organic compounds' which outlines the instrument developed for data collection and compound integration.\n\nThis will be the final update of this data set. Data collection is ongoing indefinitely, but future additions to the data set will be migrated to Dryad. Please email with any questions you may have regarding data collection or the data set."]}more » « less
-
null (Ed.)Abstract. Despite the significant contribution of biogenic volatileorganic compounds (BVOCs) to organic aerosol formation and ozone productionand loss, there are few long-term, year-round, ongoing measurements oftheir volume mixing ratios and quantification of their impacts onatmospheric reactivity. To address this gap, we present 1 year of hourlymeasurements of chemically resolved BVOCs between 15 September 2019 and15 September 2020, collected at a research tower in Central Virginiain a mixed forest representative of ecosystems in the Southeastern US.Mixing ratios of isoprene, isoprene oxidation products, monoterpenes, andsesquiterpenes are described and examined for their impact on the hydroxyradical (OH), ozone, and nitrate reactivity. Mixing ratios of isoprene rangefrom negligible in the winter to typical summertime 24 h averages of 4–6 ppb, while monoterpenes have more stable mixing ratios in the range of tenths of a part per billion up to ∼2 ppb year-round. Sesquiterpenes aretypically observed at mixing ratios of <10 ppt, but this representsa lower bound in their abundance. In the growing season, isoprene dominatesOH reactivity but is less important for ozone and nitrate reactivity.Monoterpenes are the most important BVOCs for ozone and nitrate reactivitythroughout the year and for OH reactivity outside of the growing season. Tobetter understand the impact of this compound class on OH, ozone, andnitrate reactivity, the role of individual monoterpenes is examined. Despitethe dominant contribution of α-pinene to total monoterpene mass, theaverage reaction rate of the monoterpene mixture with atmospheric oxidantsis between 25 % and 30 % faster than α-pinene due to thecontribution of more reactive but less abundant compounds. A majority ofreactivity comes from α-pinene and limonene (the most significantlow-mixing-ratio, high-reactivity isomer), highlighting the importance ofboth mixing ratio and structure in assessing atmospheric impacts ofemissions.more » « less
An official website of the United States government
