skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Portable, low-cost samplers for distributed sampling of atmospheric gases
Volatile organic compounds (VOCs) contribute to air pollution both directly, as hazardous gases, and through their reactionswith common atmospheric oxidants to produce ozone, particulate matter, andother hazardous air pollutants. There are enormous ranges of structures andreaction rates among VOCs, and there is consequently a need to accuratelycharacterize the spatial and temporal distribution of individual identifiedcompounds. Current VOC measurements are often made with complex, expensiveinstrumentation that provides high chemical detail but is limited in itsportability and requires high expense (e.g., mobile labs) for spatiallyresolved measurements. Alternatively, periodic collection of samples oncartridges is inexpensive but demands significant operator interaction thatcan limit possibilities for time-resolved measurements or distributedmeasurements across a spatial area. Thus, there is a need for simple,portable devices that can sample with limited operator presence to enabletemporally and/or spatially resolved measurements. In this work, we describenew portable and programmable VOC samplers that enable simultaneouscollection of samples across a spatially distributed network, validate theirreproducibility, and demonstrate their utility. Validation experimentsconfirmed high precision between samplers as well as the ability ofminiature ozone scrubbers to preserve reactive analytes collected oncommercially available adsorbent gas sampling cartridges, supportingsimultaneous field deployment across multiple locations. In indoorenvironments, 24 h integrated samples demonstrate observable day-to-dayvariability, as well as variability across very short spatial scales(meters). The utility of the samplers was further demonstrated by locatingoutdoor point sources of analytes through the development of a new mappingapproach that employs a group of the portable samplers and back-projectiontechniques to assess a sampling area with higher resolution than stationarysampling. As with all gas sampling, the limits of detection depend onsampling times and the properties of sorbents and analytes. The limit of detectionof the analytical system used in this work is on the order of nanograms,corresponding to mixing ratios of 1–10 pptv after 1 h of sampling atthe programmable flow rate of 50–250 sccm enabled by the developed system.The portable VOC samplers described and validated here provide a simple,low-cost sampling solution for spatially and/or temporally variablemeasurements of any organic gases that are collectable on currentlyavailable sampling media.  more » « less
Award ID(s):
2046367 1837882
PAR ID:
10496512
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
European Geophysical Union
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
16
Issue:
19
ISSN:
1867-8548
Page Range / eLocation ID:
4681 to 4692
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present measurements of volatile organic compounds (VOCs) and other trace gases taken in Salt Lake City, Utah in August and September 2022. As part of the Salt Lake regional Smoke, Ozone and Aerosol Study (SAMOZA), 35 VOCs were measured with two methods: a proton‐transfer‐reaction time‐of‐flight mass spectrometer (PTR‐ToF‐MS) and 2,4‐dinitrophenylhydrazine (DNPH) cartridges analyzed by high‐performance liquid chromatography (HPLC). Over two months, the total measured VOCs averaged 32 ± 24 ppb (mean ± standard deviation) with the hourly maximum at 141 ppb, and the total calculated OH reactivity averaged 3.7 ± 3.0 s−1(maximum at 20.7 s−1). Among them, methanol and ethanol were the most abundant VOCs, making up 42% of the ambient mixing ratio. Isoprene and monoterpenes contributed 25% of the OH reactivity from VOCs, while formaldehyde and acetaldehyde made up another 30%. The positive matrix factorization analysis showed 5 major sources of VOCs, with 32% of abundance being attributed to secondary production/biogenic sources, 44% from the combination of traffic and personal care products, 15% from industrial solvent use, and the rest from biomass burning (10%). Moderate smoke‐impacted days elevated various hazardous air pollutants (HAPs) on average by 45%–217% compared to smoke‐free days. The ratio of OH reactivity from NOxto that from VOCs showed that ozone production was mostly VOC‐limited throughout the campaign, consistent with our modeling study. VOCs and NOxboth showed increased OH reactivity due to smoke influence. NOxfeatured increased reactivity on weekdays compared to weekends, an effect not shown for VOC reactivity during SAMOZA. 
    more » « less
  2. Science for Society Buildings account for a significant fraction of the land area in cities and actively exchange air with their proximate outdoor environments via mechanical ventilation systems. However, the direct impact of buildings on urban air pollution remains poorly characterized. Due to reductions in traffic-associated emissions of volatile organic compounds (VOCs), volatile chemical products, which are widely used inside buildings, have become a major VOC source in urban areas. Indoor-generated VOCs are likely to be an important contributor to the VOC burden of the urban atmosphere, and ventilation systems provide a pathway for VOCs to be released outdoors. Here, we show how modern buildings act as significant emission sources of VOCs for the outdoor environment. Our results demonstrate that future air quality monitoring efforts in cities need to account for direct VOC discharge from buildings in order to capture emerging sources of environmental pollution that can impact the climate and human health. Summary Urban air undergoes transformations as it is actively circulated throughout buildings via ventilation systems. However, the influence of air exchange between outdoor and indoor atmospheres on urban air pollution is not well understood. Here, we quantify how buildings behave as a dynamic source and sink for urban air pollutants via high-resolution online mass spectrometry measurements. During our field campaign in a high-performance office building, we observed that the building continually released volatile organic compounds (VOCs) into the urban air and removed outdoor ozone and fine particulate matter. VOC emissions from people, their activities, and surface reservoirs result in significant VOC discharge from the building to the outdoors. Per unit area, building emissions of VOCs are comparable to traffic, industrial, and biogenic emissions. The building source-sink behavior changed dynamically with occupancy and ventilation conditions. Our results demonstrate that buildings can directly influence urban air quality due to substantial outdoor-indoor air exchange. 
    more » « less
  3. Abstract High ozone concentrations have become the major summertime air quality problem in China. Extensive in situ observations are deployed for developing strategies to effectively control the emissions of ozone precursors, that is, nitrogen oxides (NOX = NO + NO2) and volatile organic compounds (VOCs). The modeling analysis of in situ observations often makes uses of the dependence of ozone peak concentration on NOXand VOC emissions, because ozone observations are among the most widely available air quality measurements. To extract more information from regulatory ozone observations, we extend the ozone‐precursor relationship to ozone peak time in this study. We find that the sensitivities of ozone peak time and concentration are complementary for regions with large anthropogenic emissions such as China. The ozone peak time is sensitive to both VOC and NOXemissions, and the sensitivity is nearly linear in the transition regime of ozone production compared to the changing ozone peak concentration sensitivity in this regime, making the diagnostics of ozone peak time particularly valuable. The extended ozone‐precursor relationships can be readily applied to understand the effects on ozone by emission changes of NOXand VOC and to assess potential biases of NOXand VOC emission inventories. These observation constraints based on regulatory ozone observations can complement the other measurement and modeling analysis methods nicely. Furthermore, we suggest that the ozone peak time sensitivity we discussed here to be used as a model evaluation measure before the empirical kinetic modeling approach (EKMA) diagram is applied to understand the effectiveness of emission control on ozone concentrations. 
    more » « less
  4. We report on the sensitivity of enhanced ozone (O3) production, observed during lake breeze circulation along the coastline of Lake Michigan, to the concentrations of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs). We assess the sensitivity of O3 production to NOx and VOC on a high O3 day during the Lake Michigan Ozone Study 2017 (LMOS 2017) using an observationally-constrained chemical box model that implements the Master Chemical Mechanism (MCM v3.3.1) and recent emission inventories for NOx and VOCs. The MCM model is coupled to a backward air mass trajectory analysis from a ground supersite in Zion, IL where an extensive series of measurements of O3 precursors and their oxidation products, including hydrogen peroxide (H2O2), nitric acid (HNO3), and particulate nitrates (NO3-) serve as model constraints. We evaluate the chemical evolution of the Chicago-Gary urban plume as it advects over Lake Michigan and demonstrate how modeled indicators of VOC- vs. NOx- sensitive regimes can be constrained by measurements at the trajectory endpoint. Using the modeled ratio of the instantaneous H2O2 and HNO3 production rates (PH2O2 / PHNO3), we suggest that O3 production over the urban source region is strongly VOC-sensitive and progresses towards a more NOx-sensitive regime as the plume advects north along the Lake Michigan coastline on this day. We also demonstrate that ground-based measurements of the mean concentration ratio of H2O2 to HNO3 describe the sensitivity of O3 production to VOC and NOx as the integral of chemical production along the plume path. 
    more » « less
  5. The Wasatch Front in Utah, USA is currently a non-attainment area for ozone according to the Environmental Protection Agency’s (EPA) National Ambient Air Quality Standards (NAAQS). Nitrogen oxides (NOx = NO2 + NO) and volatile organic compounds (VOCs) in the presence of sunlight lead to ozone formation in the troposphere. When the rate of oxidant production, defined as the sum of O3 and NO2, is faster than the rate of NOx production, a region is said to be NOx-limited and ozone formation will be limited by the concentration of NOx species in the region. The inverse of this situation makes the region VOC-limited. Knowing if a region is NOx-limited or VOC-limited can aid in generating effective mitigation strategies. Understanding the background or regional contributions to ozone in a region, whether it be from the transport of precursors or of ozone, provides information about the lower limit for ozone concentrations that a region can obtain with regulation of local precursors. In this paper, measured oxidant and NOx concentrations are analyzed from 14 counties in the state of Utah to calculate the regional and local contributions to ozone for each region. This analysis is used to determine the nature of the atmosphere in each county by determining if the region is VOC- or NOx-limited. Furthermore, this analysis is performed for each county for the years 2012 and 2022 to determine if there has been a change in the oxidative nature and quantify the regional and local contributions to ozone over a 10-year period. All studied counties—except for Washington County—in Utah were found to be VOC-limited in 2012. This shifted in 2022 to most counties being either in a transitional state or being NOx-limited. Local contributions to ozone increased in two major counties, Cache and Salt Lake Counties, but decreased in Carbon, Davis, Duchesne, Uinta, Utah, Washington, and Weber Counties. Generally, the regional contributions to oxidant concentrations decreased across the state. A summertime spike in both regional and local contributions to oxidants was seen. Smoke from wildfires was seen to increase the regional contributions to oxidants and shift the local regime to be more NOx-limited. 
    more » « less