skip to main content


Search for: All records

Award ID contains: 1840314

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The goal of this paper is to prove a comparison principle for viscosity solutions of semilinear Hamilton–Jacobi equations in the space of probability measures. The method involves leveraging differentiability properties of the 2-Wasserstein distance in the doubling of variables argument, which is done by introducing a further entropy penalization that ensures that the relevant optima are achieved at positive, Lipschitz continuous densities with finite Fischer information. This allows to prove uniqueness and stability of viscosity solutions in the class of bounded Lipschitz continuous (with respect to the 1-Wasserstein distance) functions. The result does not appeal to a mean field control formulation of the equation, and, as such, applies to equations with nonconvex Hamiltonians and measure-dependent volatility. For convex Hamiltonians that derive from a potential, we prove that the value function associated with a suitable mean-field optimal control problem with nondegenerate idiosyncratic noise is indeed the unique viscosity solution.

     
    more » « less
  2. Abstract

    Let a 1-d system of hyperbolic conservation laws, with two unknowns, be endowed with a convex entropy. We consider the family of smallBVfunctions which are global solutions of this equation. For any smallBVinitial data, such global solutions are known to exist. Moreover, they are known to be unique amongBVsolutions verifying either the so-called Tame Oscillation Condition, or the Bounded Variation Condition on space-like curves. In this paper, we show that these solutions are stable in a larger class of weak (and possibly not evenBV) solutions of the system. This result extends the classical weak-strong uniqueness results which allow comparison to a smooth solution. Indeed our result extends these results to a weak-BVuniqueness result, where only one of the solutions is supposed to be smallBV, and the other solution can come from a large class. As a consequence of our result, the Tame Oscillation Condition, and the Bounded Variation Condition on space-like curves are not necessary for the uniqueness of solutions in theBVtheory, in the case of systems with 2 unknowns. The method is$$L^2$$L2based, and builds up from the theory of a-contraction with shifts, where suitable weight functionsaare generated via the front tracking method.

     
    more » « less
  3. Free, publicly-accessible full text available August 1, 2025
  4. Free, publicly-accessible full text available May 29, 2025
  5. Free, publicly-accessible full text available April 2, 2025
  6. Free, publicly-accessible full text available April 1, 2025