Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The 2022 Compound Drought and Heatwave (CDHW) caused widespread crop damage, water shortages, and wildfires across Europe. Our study analyzed this event’s severity and return period (RP) and compared it with past mega CDHWs in Europe. The hardest‐hit areas were Iberian Peninsula, France, and Italy, where temperatures exceeded 2.5°C above normal, and severe droughts persisted from May to August. Using a Bayesian approach, we estimated the RP for the 2022 CDHW event, which was unprecedented in Northern Italy, Iberian Peninsula, and western parts of France, with RPs of 354, 420, and 280 years, respectively. The reduced soil moisture due to precipitation deficits and high temperatures contributed to the persistence and severity of drought, creating a positive feedback loop where dry soils led to even drier conditions. In light of our findings, it is evident that global warming poses increased risks of severe CDHW events, which are likely to increase.more » « less
-
Abstract Flash Drought (FD) has garnered much attention in recent years, with significant advancements in the indicators applied for identifying these rapidly intensifying events. However, the difference in existing FD definitions and methodologies among research communities and the choice of different data sources underscores the importance of addressing the uncertainties associated with the global FD characteristics and their drivers. This study compares two key FD indicators derived based on evaporative stress ratio (ESR) and root‐zone soil‐moisture (RZSM) using three different data sources to investigate the uncertainties in global FD frequency and intensity (speed), and the influencing drivers. The results suggest that such disparities are significant in the two FD indicators across different climate regions of the globe. The results highlight varying spatial drivers of FD frequency, intensity, and their evolution, potentially linked to background aridity. Changes in precipitation, temperature, vapor pressure deficit, and soil‐temperature coupling play an important role with a cascading (concurrent) impact on the evolution of FD based on RZSM (ESR). The relationship between ESR and RZSM fails to explain most of the variance in each of these indicators specific to the FD episodes, especially in the transitional and humid climate regimes. Overall, the results highlight the necessity of more nuanced methodologies for deriving FD indicators that can efficiently couple the rapid soil‐moisture depletion rates in deeper layers with changes in atmospheric evaporative demand which has direct implications on vegetation health.more » « less
An official website of the United States government
